
Over-the-Air Runtime Wi-Fi MAC Address Re-randomization
Hongyu Jin

Networked Systems Security Group
KTH Royal Institute of Technology

Stockholm, Sweden
hongyuj@kth.se

Panos Papadimitratos
Networked Systems Security Group
KTH Royal Institute of Technology

Stockholm, Sweden
papadim@kth.se

ABSTRACT
MediumAccess Control (MAC) address randomization is a key com-
ponent for privacy protection in Wi-Fi networks. Current proposals
periodically change the mobile device MAC addresses when it dis-
connects from the Access Point (AP). This way frames cannot be
linked across changes, but the mobile device presence is exposed as
long as it remains connected: all its communication is trivially link-
able by observing the randomized yet same MAC address through-
out the connection. Our runtime MAC re-randomization scheme
addresses this issue, reducing or eliminating Wi-Fi frames linkabil-
ity without awaiting for or requiring a disconnection. Our MAC
re-randomization is practically ‘over-the-air’: MAC addresses are
re-randomized just before transmission, while the protocol stacks
(at the mobile and the AP) maintain locally the original connection
MAC addresses - making our MAC layer scheme transparent to
upper layers. With an implementation and a set of small-scale ex-
periments with off-the-shelf devices, we show the feasibility of our
scheme and the potential towards future deployment.

KEYWORDS
MAC spoofing, privacy, unlinkability, mix-zone

1 INTRODUCTION
Wi-Fi networks are a corner-stone for Internet access, at homes,
offices, and public areas, enabling seamless connectivity for laptops,
smartphones, smart wearables, etc., each identified by aMediumAc-
cess Control (MAC) address, a globally unique identifier assigned to
each Network Interface Card (NIC). MAC addresses are hard-coded
by the NIC manufacturers. When a device transmits Wi-Fi frames,
it specifies its MAC address in the Source Address (SA)/Transmitter
Address (TA) field in the frame header [1]. Transmitted (Tx) Wi-Fi
frames can be easily monitored by NICs that can operate in ‘mon-
itor/promiscuous’ mode. A monitoring device can track devices
in an area by observing received (Rx) Wi-Fi frames with the same
SA/TAMAC address. Multiple monitoring devices can track devices
(and, consequently, their users) across numerous points-of-interest
targeted users (devices) are likely to visit.

MAC address randomization [4, 15] emerged as a countermea-
sure to such so-called sniffing attacks. Instead of the hard-coded
MAC address, the driver/firmware reads software-generated MAC
addresses, refreshed periodically or based on specific conditions
(e.g., per SSID or per connection). With encryption covering Wi-Fi
frame payloads, device transmissions are still easily linkable while
the same MAC address is used. Once the device is assigned a new
randomizedMAC address, a local eavesdropper cannot link traffic to
that by the same device with an earlier randomized MAC address.
Thus, such relatively shorter-term MAC addresses significantly
reduce linkability of traffic and thus user presence/activities.

The level of privacy protection (unlinkability) is not high: while
connected to an Access Point (AP), given the device uses the same
MAC address throughout the connection, inference attacks on user
activities are possible. More frequent MAC randomization is pos-
sible by manually disconnecting and re-connecting to APs, at the
expense of inefficient communication, without fundamentally solv-
ing the problem at hand (see Sec. 2).

This motivates our proposal of over-the-air runtime MAC re-
randomization, that is, MAC randomization within and repeatedly
throughout the connection/session without affecting the communi-
cation quality, i.e., without disconnections and no data rate or reli-
ability reduction. Our scheme only randomizes the MAC addresses
in the headers of Tx frames on the verge of transmission, while
the Rx devices recover the original/actual (termed base) MAC ad-
dresses immediately upon frame reception. This makes our scheme
transparent to upper layer protocols. At the same time, an eaves-
dropper only sees the ephemeral re-randomized MAC addresses
in the Tx frame headers. The re-randomization is performed syn-
chronously by all stations connected to an AP, drastically growing
the anonymity set to be equivalent to the set of connected devices.

We provide a detailed description of our scheme, including Se-
quence Number (SN) and nonce (this term is used interchangeably
with Packet Number (PN) and Initialization Vector (IV)) reset ap-
proaches (Sec. 3), and analyze its security and privacy (Sec. 4). We
implement our scheme with off-the-shelf Wi-Fi NICs at the dri-
ver level (Sec. 5). A set of small-scale experimental results shows
that our scheme does not deteriorate communication performance
(Sec. 6), before our concluding remarks (Sec. 7).

RelatedWorks: To the best of our knowledge, the only existing
work that addresses MAC address rotation during Wi-Fi connec-
tion is RoMA [6]. However, RoMA does not provide seamless MAC
address rotation from the perspective of the AP, because different
IP addresses are used for virtual interfaces; the number of rotating
MAC addresses during a connection is limited by the maximum
number of supported Wi-Fi NIC virtual interfaces. Cryptographi-
cally generated [5] randomized addresses were not Wi-Fi compati-
ble. The current MAC randomization protocol, work-in-progress
with an IETF draft [15], defines 46-bit randomization (with 2 fixed
bits defining unicast and locally administered addresses). The latest
OSes implement their variants of MAC randomization, with major
differences reflected on randomized MAC address lifetime (e.g., per
SSID or per connection) [4, 8, 15]. We refer readers to [4, 8] for a
detailed introduction to MAC randomization policies.

2 PROBLEM STATEMENT
MAC randomization has been adopted by the latest mobile devices
(e.g., Apple and Android based [7, 13]) to prevent tracking connec-
tions to different APs/SSIDs in public areas. However, the same

https://orcid.org/0000-0003-2022-3976
https://orcid.org/0000-0002-3267-5374

Hongyu Jin & Panos Papadimitratos

randomized MAC address is used throughout a connection. This
way, an eavesdropping/sniffing attacker can easily identify a device
(period of) presence: by eavesdropping the appearance and disap-
pearance of a specific mobile MAC frame address in the network.
For example, a person at work connects her/his device to an AP in
the office area having the same MAC address throughout the day.
Therefore, randomized MAC addresses do not prevent inferring
user activity or linking the same randomized MAC address over
different connections (e.g., over multiple days).

A straightforward improvement is to periodically force discon-
nection from the AP and re-connection with a fresh randomized
MAC address; triggered manually by the user or automatically by
the system. However, such an approach would not be very effective
because the attacker could easily link the two (old and new) MAC
addresses by observing the appearance of a new MAC address in
the network immediately after the disappearance of an old MAC
address.

Inspired by the mix-zone approach [3, 10] for identity and lo-
cation protection, where users change pseudonyms in a mix-zone
synchronously, devices connected to an AP can synchronize their
disconnection and re-connection with freshly randomized MAC
addresses. Such synchronized actions can be performed periodi-
cally to render MAC address linking based on the appearance/dis-
appearance timing impossible; because multiple MAC addresses
would disappear and appear at the same time. However, such forced
dis- and re-connections could cause substantial delays at each re-
connection. Moreover, some devices might refuse to disconnect
and change MAC address at a given point - e.g., due to ongoing
communication (e.g., important video calls) of critical nature - at the
expense of remaining linkable. Having several devices refraining
from changing their MAC addresses shrinks the anonymity set for
devices that did change their address.

These limitations motivate us to propose the runtime MAC re-
randomization scheme described in Sec. 3: an effective scheme
allowing fast changes across randomized MAC addresses without
degrading communication performance, and preventing frame link-
ing based on continuous Sequence Numbers (SNs) and WPA2/3
nonces. Our scheme protects against any eavesdroppers (including
devices connected to the same AP) and retains the same level of
privacy protection against the connected AP as that of classic MAC
randomization [4, 8, 15]. Fingerprinting attacks based on traffic
analysis [8, 9, 11] are out of the scope of this paper and part of
future work.

3 OUR SCHEME
We build on top of MAC randomization, to ensure that a roaming
user/mobile device (termed station) that connects to a new AP
selects a new randomly chosen MAC address. We term this the base
MAC address for the current connection to the AP. The base address
of every station is known and kept by the AP, clearly, not needing
to change/randomize further. The first novelty of our scheme is to
not use the base address but rather assign a new periodically re-
randomized MAC address for Tx frames. Re-randomized addresses
are computed with a hash function based on a common secret, the
WPA2/3 Pairwise Transient Key (PTK), between each station and
the AP (Sec. 3.1). Computations are performed on both the AP and

each station independently, based on identical inputs, thus resulting
in identical new, re-randomized MAC addresses. For each new re-
randomization, SNs and WPA2/3 nonces are also reset to prevent
linking based on these (otherwise continuous) values (Sec. 3.2). In
order to prevent nonce reuse, we propose a controlled nonce reset
to make sure the 48-bit nonce wrap interval is significantly longer
than a PTK lifetime. Our scheme is transparent to the upper layers
because it ensures that only the re-randomized MAC addresses are
exposed over the air, while the protocol stacks operate with the
base MAC address (Sec. 3.3).

3.1 MAC Computation
Our scheme assumes the base MAC address randomization is han-
dled by the station itself. This can be easily supported by mobile
devices nowadays. For example, themacchanger tool can randomize
the MAC address in Linux systems. Although current default Apple
and Android policies don’t change MAC addresses for each new
connection to the same SSID without user intervention (e.g., by
‘forgetting’ the network or resetting the network settings) [7, 13],
it is clear that this can be supported (currently restricted by system
policies).

After the AP and a station are connected (thus, shared keys com-
puted), the MAC re-randomization is performed periodically, every
𝑇 seconds; 𝑇 is the lifetime of each re-randomized MAC address.
Transitions to a new MAC address are synchronized across all sta-
tions connected to an AP. The computation of the re-randomized
MAC address is based on a hash function with three input val-
ues, carried out by the AP and each station locally, based on the
corresponding pair-wise shared secret (key).
• The first input is the base (static) MAC address, used to initiate

the current connection to the AP.
• The second input is the PTK computed during the authentica-

tion phase [14], only known by the AP and the corresponding
station, thus the shared secret for each AP-station pair. In WPA2,
a PTK (thus the re-randomized MAC addresses) can be derived
by any eavesdropper that monitored a connection from its very
beginning (i.e., recorded all handshake frames) and knows the
passphrase. Thus, WPA2 is not fully secure per se and cannot
be used to enhance privacy beyond the standard MAC random-
ization approach [4, 8, 15] with our scheme. However, the Drag-
onfly/Simultaneous Authentication of Equals (SAE) handshake
protocol in WPA3 requires active participation to compute the
PTK, essentially preventing the eavesdropper from computing
the PTK and consequently the re-randomized MAC addresses of
other stations, even if she were present from the beginning of
their connection [14].

• The last input is a unique index of the𝑇 interval, i.e., the validity
period of the re-randomizedMAC address. The index is computed
with ⌊𝑡𝑒𝑝𝑜𝑐ℎ/𝑇 ⌋, where 𝑡𝑒𝑝𝑜𝑐ℎ is the Unix (or epoch) time in
seconds (counted from January 1, 1970).
The three values are concatenated and hashed to produce a

digest whose first six bytes are used as the basis for a random MAC
address. In order to derive a validMAC address, we have to set to the
first byte bit-0=0 (unicast) and bit-1=1 (locally administered) [1, 15].
With this adjustment, the six bytes are ready to be used as the newly
re-randomized MAC address. Each station only needs to maintain

Over-the-Air Runtime Wi-Fi MAC Address Re-randomization

the currently used re-randomized MAC address (for the current 𝑇
interval) together with the base address, and convert between the
base one and the re-randomized one during frame transmission
and reception. The AP needs to (i) compute for each station its
re-randomized MAC address using the same inputs and function as
described above, and (ii) maintain a table of base and re-randomized
MAC addresses for MAC conversion for Wi-Fi frames sent/received
to/from the stations. The AP does not need to randomize (let alone
re-randomize) its MAC address because there is no need to protect
the AP privacy.

3.2 Sequence Number and Nonce Reset
To prevent linking Wi-Fi frames based on their continuous SNs
and nonces, we have to reset them along with each MAC address
re-randomization. The SN is simply reset to 0, a standard operation
that usually happens when the 12-bit incremental SN reaches its
maximum value (i.e., 4095; or 2047 allowed on some devices [4]).
In our scheme, the SN reset happens together with the MAC re-
randomization too.

InWPA2/3, 48-bit nonces (essentially PNs) are used to ensure the
same plaintext does not result in the same ciphertext [12]. Unlike
SNs, resetting the nonce to 0 would create a vulnerability, due
to nonce reuse. A straightforward approach is to set the nonce
to a random value with the new MAC address, and increment as
usual, from that point until the next MAC re-randomization. The
large enough 48-bit nonce space would naturally render nonce
reuse highly unlikely. This can be augmented by checking whether
frames within the upcoming 𝑇 interval could potentially reuse
earlier own nonces (depending on the bit rate and frame size) and
randomize again if needed. This has a privacy implication: frames
using previously seen nonces shrink the anonymity set because
frames with identical nonces do not originate from the same station
(MAC addresses).

PN-LPN-H

48-bit

h-bit l-bit

Figure 1: 48-bit nonce/PN comprises ℎ/𝑙-bit PN-H/PN-L.

To thwart nonce reuse and the potential privacy issue above,
we propose a controlled nonce/PN reset approach. As shown in
Figure 1, we split the PN field into PN-H and PN-L, ℎ-bit and 𝑙-
bit long, respectively, where ℎ + 𝑙 = 48. For the corresponding 𝑇
interval, we set PN-H = ⌊𝑡𝑒𝑝𝑜𝑐ℎ/𝑇 ⌋ 𝑚𝑜𝑑 2ℎ , and PN-L is simply
reset to 0 with each new MAC re-randomization. In other words,
PN-H is incremented by 1 every 𝑇 , and PN-L is the nonce space
used for the frames within the 𝑇 interval. ℎ and 𝑙 values can be
chosen based on Eq. (1), where 𝐿𝑓 𝑟𝑎𝑚𝑒 is the average frame size,
and the interval between two PN wraps is 2ℎ ∗𝑇 . We show in Sec. 4
that nonce reuse is essentially impossible with practical frame sizes
and bit rates.

𝑙 = ⌈𝑙𝑜𝑔2 (
𝐵𝑖𝑡𝑟𝑎𝑡𝑒 ∗𝑇
𝐿𝑓 𝑟𝑎𝑚𝑒

)⌉, ℎ = 48 − 𝑙 (1)

3.3 Over-the-Air MAC Conversion

StationiAP

...

......
MACi MACi'

MACi MACi'

MACk MACk' MACk MACk'

...

...

......... ...
.........

...

......

Tx frame

Wi-Fi frames
seen by public

Tx frame

MAC table
on AP

MAC mapping

MAC mapping

Rx frame

Rx frame

...

...

.........
...
.........

Stationk...

...

SA/TA: MACk

DA/RA: MACAP

...

...

SA/TA: MACk'

DA/RA: MACAP

...

...

SA/TA: MACAP

DA/RA: MACi

...

...

SA/TA: MACAP

DA/RA: MACi
...

...

SA/TA: MACAP

DA/RA: MACi'

...

...

SA/TA: MACk

DA/RA: MACAP

Figure 2: Over-the-air MAC conversion.

Figure 2 illustrates the over-the-air MAC conversion. The AP
maintains a MAC address table, one row per connected mobile
station; with the base MAC addresses used for establishing connec-
tions in the left column and the currently valid re-randomized MAC
addresses in the right column. Immediately before transmitting a
Tx frame, the AP performs a lookup in the MAC address table with
the Destination Address (DA)/Receiver Address (RA) address (a
base address). If there is a match, the DA/RA address is converted
to the corresponding re-randomized MAC address. For an Rx frame,
the AP lookup is carried out with the SA/TA address at the right
column of the MAC table, immediately upon Rx frame reception. If
there is a match, the SA/TA address is converted to the correspond-
ing base MAC address, transparently to the upper layers, so that the
Rx frame payload is properly decapsulated. Each station only main-
tains its own re-randomized MAC addresses, apart from the base
address. Similarly, each station converts the SA/TA address on a Tx
frame and the DA/RA address (that matches own re-randomized
addresses) on an Rx frame. In summary, only the re-randomized
MAC addresses are exposed over the air while the AP and sta-
tion protocol stacks use the station base MAC address. The MAC
address conversion has to be performed before the Frame Check
Sequence (FCS) is calculated, usually done at the hardware level;
otherwise, the corresponding frames would be deemed corrupted
and dropped by receivers.

4 SECURITY AND PRIVACY ANALYSIS
Weprovide a security analysis on nonce reuse and a privacy analysis
on the unlinkability of MAC addresses, based on the unencrypted
MAC header fields over the synchronized re-randomizations. Traffic
(metadata) analysis or device fingerprinting are out of scope.

4.1 Preventing Nonce Reuse
Nonce reuse with a same PTK is prevented by choosing proper ℎ
and 𝑙 values based on system parameters (Eq. (1)). We explain, with
the help of a demanding example, why nonce reuse is practically
impossible with our scheme. Figure 3 shows the interval between
two nonce wraps (i.e., PN-Hwraps to zero) considering two extreme
values for average data frame size (50 𝑏𝑦𝑡𝑒𝑠 , near minimal) and bit
rate (10 𝐺𝑏𝑝𝑠). Even so, the wrap happens every 60 days or more,

Hongyu Jin & Panos Papadimitratos

0 5 10 15 20 25

T (hours)

60

80

100

120

140

P
N

W
ra

p
In

te
rv

al
(d

ay
s)

Figure 3: Interval between two PN wraps, as a function of 𝑇
(1𝑠 ∼ 24ℎ), for 50 𝑏𝑦𝑡𝑒 data frames and 10 𝐺𝑏𝑝𝑠 bit rate.

System Time

Station1:

Station2:

Station3:

Station4:

Anonymity setConnection continues
A station's connection period

T T T

Station5:

...

...

...

...

...

...

...

...

Re-randomization point

Figure 4: MAC re-randomization example with five stations.

much longer than the expected lifetime of a PTK. With larger frame
sizes and lower bit rates, the number of theoretically possible frame
transmissions would be lower. This implies lower 𝑙 and higher ℎ
values, thus even longer wrap intervals than those in Figure 3.

4.2 MAC Address Unlinkability
Figure 4 shows an example ofMAC re-randomization for five station
connections. As per Sec. 2, if stations re-randomize/change their
MAC address independently, thus in all likelihood at distinct points
in time, an eavesdropper could easily link any two consecutiveMAC
addresses of each station (possibly based on continuing activity
across the MAC address change). However, with our synchronized
MAC re-randomization, the anonymity set after each MAC change
would be the same as the number of connected stations; thus linking
the old and new MAC addresses of the same device would be hard.
The initial connection to the AP always stands out due to the hand-
shake frames, but the subsequent frames will not be linkable based
on MAC addresses. Hiding a disconnection is possible if a station
leaves the network without sending disconnection frames and 𝑇 is
relatively short; thus the eavesdropper would not know whether
the station left or it was just idle, without any communication for
a short period until the next re-randomization point. This would
incur slightly more overhead on the AP, needing to maintain the
disconnected stations until their removal due to inactivity timeouts.
Moreover, unified SN and nonce resets (i.e., reset to identical values
by each station and the AP) make linking based on these (otherwise
continuous) values impossible. Last but not least, we emphasize our
scheme does not enhance privacy against connected APs: they learn
the same information the standard MAC randomization provides.

5 IMPLEMENTATION
We implement our MAC re-randomization and run experiments on
four identical small form factor computers with Atheros AR5414
NICs [2], Intel Atom D510 dual-core 1.66GHz CPUs, and 1 GB

RAM. They are all installed with Debian OS 11.8, with Linux ker-
nel version 5.10.0-26. AR5414 is a legacy NIC model that supports
only IEEE 802.11 a/b/g, not the latest IEEE 802.11 n/ac/ax (Wi-Fi
4/5/6). However, we choose this available to us model due to Linux
support through the fully open-source driver, ath5k, without any
non-free binary firmware. Therefore, we have full control of the
device through its driver. This makes AR5414 perfect for testing
the feasibility of our approach, as a first step towards a larger scale
deployment and experiments with the latest devices. We imple-
ment our scheme by modifying the ath5k driver and the mac80211
module provided through Linux backports driver version 5.10.1681.

5.1 MAC Re-randomization
Our scheme requires each station to randomize its base MAC ad-
dress used for connection through system tools, e.g.,𝑚𝑎𝑐𝑐ℎ𝑎𝑛𝑔𝑒𝑟 ,
to set a randomized MAC address for the wireless interface in Linux.
For the re-randomized MAC computation after the established con-
nection, we use the SHA256 function from the Linux kernel crypto
module to compute hash digests, as described in Sec. 3, retaining
the first six bytes. Then, we set bit-0=0 and bit-1=1 of the first
byte respectively, to ensure the MAC address is valid. At the AP,
we use the Linux kernel hash table2 to maintain the MAC address
table. For each station, the AP maintains two entries (i.e., key-value
pairs) in its hash table. The keys of the two entries are the base
MAC and the re-randomized MAC addresses for each connected
station. The values of the two entries are identical: a 𝑠𝑡𝑟𝑢𝑐𝑡 com-
prises both the base and the re-randomized MAC addresses. The
two entries are used to look up MAC addresses to convert to for Tx
or Rx frames. We declare a 10-bit hash table in our implementation,
storing 210 entries for at most 512 stations. With AR5414, FCS can
be correctly calculated by the hardware after the Tx frame MAC
address conversion by the driver.

5.2 Resetting Sequence Number and Nonce
We found that the AR5414 would assign SNs on the hardware by
overwriting the driver-assigned SNs. Therefore, we had to disable
hardware-assigned SNs to respect the driver-assigned SNs (Sec. 3.2).
We were able to reset nonces in the driver without any issue.

5.3 Enabling ACK/RTS/CTS Frames
5.3.1 ACK Frames. Time-sensitive ACK frames acknowledge data
frames, triggered upon reception by the hardware, not the dri-
ver (the hardware-driver communication would introduce extra
delay). Usually, NICs in station mode only acknowledge frames
that specify RA/DA as the Rx station local addresses. In our imple-
mentation, given the transmitted frames carry the re-randomized
MAC addresses that do not match the local addresses, the Rx hard-
ware would not trigger ACK frames, resulting in a series of re-
transmissions of non-ACKed data frames.

This can be solved by setting a BSSID mask (originally used to
enable multiple virtual interfaces) on AR5414 [2]: after each MAC
re-randomization, setting a BSSID mask (computed with inputs the
base and the newly re-randomized MAC addresses) ensures ACK
frames are properly triggered. However, this opens up a privacy

1https://cdn.kernel.org/pub/linux/kernel/projects/backports/stable/
2https://lwn.net/Articles/510202/

https://cdn.kernel.org/pub/linux/kernel/projects/backports/stable/
https://lwn.net/Articles/510202/

Over-the-Air Runtime Wi-Fi MAC Address Re-randomization

issue. An attacker could inject frames by specifying the (eaves-
dropped) base MAC address of a station as the DA/RA. These in-
jected frames would trigger ACK frames and expose the presence
of the device with the targeted (sought by the adversary) base MAC
address.

In order to fundamentally solve the problem, we directly update
the main MAC address register [2] on the hardware with the re-
randomized MAC address. This allows ACK frames to be triggered
only for the currently used re-randomized MAC address, not for
the base MAC address. This is the expected correct behavior of our
scheme: stations should not respond to any frame destined for their
base MAC addresses. Otherwise, the presence of the device with
the specific base MAC address would be exposed.

5.3.2 RTS/CTS Frames. Similar to ACK frames, time-sensitive Re-
quest to Send (RTS)/Clear to Send (CTS) frames3 are also handled
by the hardware [2]. A connected station sends an RTS, awaits for
a CTS sent in response by the AP and only then transmits data.
Most APs would disable RTS/CTS frames due to performance un-
certainty; e.g., OpenWrt disables RTS/CTS (confirmed by installing
the OpenWrt firmware on two different ASUS router models), and
dd-wrt sets the default RTS threshold to 2347 𝑏𝑦𝑡𝑒𝑠4 (i.e., effectively
disabled, given the maximum Wi-Fi frame size being 2346 𝑏𝑦𝑡𝑒𝑠).
However, in order to demonstrate the usability of RTS/CTS frames
in our implementation, we do enable RTS/CTS frames by setting a
moderate threshold on the stations. We see RTS/CTS frames prop-
erly triggered with the re-randomized MAC addresses written to
the hardware register (see Sec. 6).

6 EXPERIMENTAL EVALUATION
We find that our scheme and the modified driver do not deteriorate
the communication performance in the experimental setup. Due to
the legacy hardware and the limited number of devices available,
we do not present an extensive evaluation. Our goal is to show
the feasibility of our scheme by comparing with the vanilla driver,
serving as a stepping stone to a larger scale experiment with the
latest devices in the future.

6.1 Experimental Setup
One device acts as the AP and the other three act as stations, de-
ployed in a small office. 𝑆𝑡𝑎𝑡𝑖𝑜𝑛1 is in line-of-sight, and 𝑆𝑡𝑎𝑡𝑖𝑜𝑛2
and 𝑆𝑡𝑎𝑡𝑖𝑜𝑛3 are in non-line-of-sight of the AP. We use ℎ𝑜𝑠𝑡𝑎𝑝𝑑
to set up the AP and 𝑤𝑝𝑎_𝑠𝑢𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 for the stations. The AP is
configured with WPA3-Personal. The stations are assigned static
IPv4 addresses, and access the Internet wirelessly, routed through
the AP. We set 𝑇 = 30𝑠 , and both ℎ and 𝑙 to 24, thus 24-bit PN-
H/L. The values are sufficient to prevent nonce reuse for the bit
rate supported by the devices. We provide the full ℎ𝑜𝑠𝑡𝑎𝑝𝑑 and
𝑤𝑝𝑎_𝑠𝑢𝑝𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 configurations below.

3They are intended to make the shared medium access more efficient, solving the
hidden and exposed terminal problems.
4https://wiki.dd-wrt.com/wiki/index.php/Advanced_wireless_settings

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(a)

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(b)

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(c)

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(d)

Figure 5: (a, c) Vanilla driver and (b, d) our scheme. Average
copy speed of 50𝑀𝐵 files to the server (public IP) with (a, b)
RTS/CTS off and (c, d) RTS_threshold=500 𝑏𝑦𝑡𝑒𝑠.

i n t e r f a c e =<INTERFACE>
d r i v e r = n l 80211
s s i d =<SSID >
hw_mode=g
channe l =9
The next two lines enable WPA3
wpa=2
wpa_key_mgmt=SAE
r s n _p a i rw i s e =CCMP
wpa_passphrase=<PASSWORD>
ieee80211w =2

Listing 1: ℎ𝑜𝑠𝑡𝑎𝑝𝑑

network = {
s s i d =<SSID >
psk=<PASSWORD>
key_mgmt=SAE
ieee80211w =2

}

Listing 2:𝑤𝑝𝑎_𝑠𝑢𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡

6.2 Wi-Fi Frame Monitoring
We also place another device in the same space, with its wireless
interface set to monitor mode on the same channel as the AP and
three stations. Real-time monitoring data through Wireshark5 con-
firms that the MAC addresses are refreshed every 𝑇 = 30𝑠 . Once
a new 𝑇 interval is reached, older MAC addresses no longer show
up in the captured frames, while the ongoing communication is
undisrupted. We also observe that ACK/RTS/CTS frames, handled
by the hardware, are properly triggered thanks to the hardware
overwritten MAC address registers.

6.3 Performance Evaluation
In order to compare the performance of the vanilla driver and our
implementation, we conduct several experiments, copying files
between a local server and the stations, and downloading files from
the Debian website. We repeatedly run 𝑠𝑐𝑝 copy or𝑤𝑔𝑒𝑡 download
commands (i.e., a new command is executed after the previous one
concludes), to make sure all three stations communicate with the
AP simultaneously. We show the average speed for five operations
(commands run) for each station.

Figure 5 shows the results for repeatedly copying (uploading) a
50𝑀𝐵 file from the stations to a local server with a public IP address.
We see the results are similar for the two driver versions, while
enabling RTS/CTS improves the performance. The improvement is
more evident for 𝑆𝑡𝑎𝑡𝑖𝑜𝑛1, which is in line-of-sight of the AP.

5https://www.wireshark.org/

https://wiki.dd-wrt.com/wiki/index.php/Advanced_wireless_settings
https://www.wireshark.org/

Hongyu Jin & Panos Papadimitratos

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(a)

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(b)

Figure 6: (a) Vanilla driver and (b) our scheme. Average copy
speed of 50𝑀𝐵 files from the server (public IP).

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(a)

1 2 3 4 5
N th File

0

200

400

600

A
ve

ra
ge

S
p

ee
d

(K
B

/s
)

Station1

Station2

Station3

(b)

Figure 7: (a) Vanilla driver and (b) our scheme. Average down-
load speed of 60𝑀𝐵 images from the official Debian website.

Figure 6 shows the results for stations copying (downloading) a
50 𝑀𝐵 file from the same local server. In this scenario, we didn’t
enable RTS/CTS on the stations because the majority of heavy
transmissions are from the AP to the stations. The results are again
similar for the two driver versions. For completeness in this context,
we also evaluate the speed of downloading a 60𝑀𝐵 ISO file6 from
the official Debian website over the Internet. Figure 7 shows the
results for the two driver versions are similar too.

The goal is achieved: the modified driver performs very similarly
to the vanilla driver. We do not attempt to explain performance
results in further detail, because the intent is not to evaluate the
latest Wi-Fi hardware performance or an optimized AP (unlike our
device that acted as AP). Extensive performance evaluation is left
for future work, after a successful implementation of our scheme
on the latest NICs that support IEEE 802.11 n/ac/ax (Wi-Fi 4/5/6).

7 CONCLUSION AND FUTUREWORK
Our scheme re-randomizes MAC addresses while the stations are
connected to the AP without disrupting ongoing communication.
Synchronized MAC address transitions make linking based on tim-
ing information difficult, with the size of the anonymity set being
the number of connected stations. SNs and nonces are also reset to
ensure unlinkability. We show the feasibility of our scheme with
a set of small-scale experiments. The benefit is a very significant
reduction of user exposure to any eavesdropper: any long-lived con-
nection/session with an AP essentially dissolves into a multitude
of unlinkable ephemeral connections.

An immediate next step is to implement and evaluate our scheme
on the latest NICs, with the challenge of using non-free binary
firmware. The 𝑇 value of our scheme is currently hard-coded into
the driver; an extension is to have connected mobile stations receive
the re-randomization schedule from the AP. Our scheme highly

6https://cdimage.debian.org/cdimage/archive/5.0.10/powerpc/iso-cd/debian-5010-
powerpc-businesscard.iso

depends on time synchronization, especially for high bit rates (i.e.,
short frame intervals), otherwise station MAC address transitions
would be easily linkable. Countermeasures for loosely synchronized
devices would be necessary, along with a full-blown unlinkability
analysis. Adaptation of our scheme in Wi-Fi ad-hoc mode is also a
part of future work.

ACKNOWLEDGMENTS
This work was supported by the Swedish Research Council project
2020-04621.

REFERENCES
[1] IEEE Std 802.11-2020. 2021. IEEE Standard for Information Technology–

Telecommunications and Information Exchange between Systems - Local and
Metropolitan Area Networks–Specific Requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2021).

[2] AR5414 Dual-Band, Multi-Mode MAC/BB/Radio for IEEE 802.11 a/b/g Wireless
LAN. 2005. https://atoma.spb.ru/sites/default/files/documents/ar5414_data_
sheet_05_04.pdf

[3] Alastair R Beresford and Frank Stajano. 2003. Location privacy in pervasive
computing. IEEE Pervasive computing 2, 1 (2003), 46–55.

[4] Ellis Fenske, Dane Brown, Jeremy Martin, Travis Mayberry, Peter Ryan, and
Erik C Rye. 2021. Three Years Later: A Study of MAC Address Randomization In
Mobile Devices And When It Succeeds. PoPETs 3 (2021), 164–181.

[5] Ben Greenstein, Damon McCoy, Jeffrey Pang, Tadayoshi Kohno, Srinivasan
Seshan, and DavidWetherall. 2008. Improving wireless privacy with an identifier-
free link layer protocol. In ACM MobiSys. Breckenridge, Colorado.

[6] Johann Hugon, Mathieu Cunche, and Thomas Begin. 2022. RoMA: Rotating MAC
Address for privacy protection. In SIGCOMM Demo. Amsterdam, Netherlands.

[7] MAC Randomization Behavior. 2023. https://source.android.com/docs/core/
connect/wifi-mac-randomization-behavior

[8] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont Brown,
Chadwick Riggins, Erik C Rye, and Dane Brown. 2017. A Study of MAC Address
Randomization in Mobile Devices and When it Fails. PoPETs 4 (2017), 365–383.

[9] Célestin Matte, Mathieu Cunche, Franck Rousseau, and Mathy Vanhoef. 2016.
Defeating MAC address randomization through timing attacks. In ACM WiSec.
Darmstadt, Germany.

[10] Panos Papadimitratos. 2019. Mix-Zones in Wireless Mobile Networks. Springer.
[11] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S Cardoso, and Frank

Piessens. 2016. Why MAC address randomization is not enough: An analysis of
Wi-Fi network discovery mechanisms. In Asia CCS. Xi’an, China.

[12] Mathy Vanhoef and Frank Piessens. 2018. Release the Kraken: new KRACKs in
the 802.11 Standard. In ACM CCS. Toronto, Canada.

[13] Wi-Fi privacy. 2021. https://support.apple.com/guide/security/wi-fi-privacy-
secb9cb3140c/web

[14] WPA3 Specification. 2022. https://www.wi-fi.org/system/files/WPA3%
20Specification%20v3.1.pdf

[15] Juan-Carlos Zúñiga, Carlos J. Bernardos, and Amelia Andersdotter. 2023. Ran-
domized and Changing MAC Address. Technical Report. IETF. https://datatracker.
ietf.org/doc/draft-ietf-madinas-mac-address-randomization/09/

https://cdimage.debian.org/cdimage/archive/5.0.10/powerpc/iso-cd/debian-5010-powerpc-businesscard.iso
https://cdimage.debian.org/cdimage/archive/5.0.10/powerpc/iso-cd/debian-5010-powerpc-businesscard.iso
https://atoma.spb.ru/sites/default/files/documents/ar5414_data_sheet_05_04.pdf
https://atoma.spb.ru/sites/default/files/documents/ar5414_data_sheet_05_04.pdf
https://source.android.com/docs/core/connect/wifi-mac-randomization-behavior
https://source.android.com/docs/core/connect/wifi-mac-randomization-behavior
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://support.apple.com/guide/security/wi-fi-privacy-secb9cb3140c/web
https://www.wi-fi.org/system/files/WPA3%20Specification%20v3.1.pdf
https://www.wi-fi.org/system/files/WPA3%20Specification%20v3.1.pdf
https://datatracker.ietf.org/doc/draft-ietf-madinas-mac-address-randomization/09/
https://datatracker.ietf.org/doc/draft-ietf-madinas-mac-address-randomization/09/

	Abstract
	1 Introduction
	2 Problem Statement
	3 Our Scheme
	3.1 MAC Computation
	3.2 Sequence Number and Nonce Reset
	3.3 Over-the-Air MAC Conversion

	4 Security and Privacy Analysis
	4.1 Preventing Nonce Reuse
	4.2 MAC Address Unlinkability

	5 Implementation
	5.1 MAC Re-randomization
	5.2 Resetting Sequence Number and Nonce
	5.3 Enabling ACK/RTS/CTS Frames

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Wi-Fi Frame Monitoring
	6.3 Performance Evaluation

	7 Conclusion and Future work
	References

