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Abstract—Secret key establishment leveraging the physical
layer as a source of common randomness has been investigated
in a range of settings. We investigate the problem of establishing,
in an information-theoretic sense, a secret key between a user
and a base-station (BS) (more generally, part of a wireless
infrastructure), but for two such user-BS pairs attempting the
key establishment simultaneously. The challenge in this novel
setting lies in that a user can eavesdrop another BS-user
communications. It is thus paramount to ensure the two keys
are established with no leakage to the other user, in spite the
interference across neighboring cells. We model the system with
BS-user communication through an interference channel and
user-BS communication through a public channel. We find the
region including achievable secret key rates for the general case
that the interference channel (IC) is discrete and memoryless.
Our results are examined for a Gaussian IC. In this setup, we
investigate the performance of different transmission schemes
for power allocation. The chosen transmission scheme by each
BS essentially affects the secret key rate of the other BS-user.
Assuming base stations are trustworthy but that they seek to max-
imize the corresponding secret key rate, a game-theoretic setting
arises to analyze the interaction between the base stations. We
model our key agreement scenario in normal form for different
power allocation schemes to understand performance without
cooperation. Numerical simulations illustrate the inefficiency of
the Nash equilibrium outcome and motivate further research on
cooperative or coordinated schemes.

I. INTRODUCTION

Secret key agreement by exploiting the physical layer com-
mon randomness is a promising approach that can complement
security architectures, providing with shared secret keys. The
shared keys at the physical layer could be passed to the
upper layers to be used for different security purposes e.g.,
confidentiality, authentication and integrity. The problem of
secret key sharing at the physical layer has been investigated
in different scenarios [1]. Secret key agreement was considered
between two users in the presence of an external eavesdropper
in [2] and [3] in which the users had access to common
randomness deduced from a broadcast channel and commu-
nicated over a public channel. In some other works, the basic
broadcast channel is replaced with the other basic channels
which are building blocks of wireless networks. [4], [5] and
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[6] consider key agreement between two users in the presence
of an external eavesdropper where the common randomness
arises from the fading and two-way channels. Sharing secret
keys over a generalized multiple access channel is considered
in [7], [8], [9] and [10], in which two users intend to share
secret keys with a base station hidden from each other. In these
works, there is no external eavesdropper and the legitimate
users are the potential eavesdroppers of each other’s secret
key.

In this paper, we investigate the problem of key sharing in a
new scenario depicted in Fig. 1, in which BS1 communicates
with User 1 while the unintended signal from BS2 reveals
some information about the communications between BS2 and
User 2 to User 1. Symmetrically, BS2 communicates with
User 2 while the unintended signal from BS1 reveals some
information about the communications between BS1 and User
1 to User 2. We assume users are honest but curious, i.e., they
do not intend to spoil each other’s signals, but try to obtain
information about each other’s communications as much as
possible. The base stations are assumed to be honest and
non-curious. We establish physical layer key sharing in the
described scenario. According to Fig. 1, User 1 and BS1 agree
on a key that is kept secret from User 2 and simultaneously,
User 2 and BS2 agree on a key hidden from User 1. We
model the system with an interference channel for downlink
transmission from the base stations to the users. Then, we
model the users communication to the base stations (uplink)
as a noiseless public channel that could be eavesdropped by
anyone including the neighbor cell user(s). In our scenario,
first the interference channel of the downlink is used as a
source of common randomness and then, the uplink public
channel is used. As a result of the BS-user interaction over
the interference (downlink) and public (uplink) channels, Ki

is shared between User i and Base Station i for i = 1, 2
according to Fig 2.

The suggested scenario is applicable to a variety of existing
and upcoming technologies in the broad context of 5G, in
which spectrum sharing is used for efficient resource utiliza-
tion. Due to spectrum sharing, the users near to the border of
a cell suffer from inter-cell interference from the neighboring
cells base stations. This not only interferes with the communi-
cations between a user and the corresponding base station, but
it also results in a security challenge, i.e., information leak-
age. Our described key sharing scenario provides confidential
communication between each user and the corresponding base
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station. If the base stations belong to the same operator, which
already has a security architecture, then the physical layer
key sharing strengthens the existing architecture. Otherwise,
they can be simply used as a solution for confidentiality.
Our scenario is not limited to infrastructure-based networks
(e.g., cellular or mesh networks). It can also capture a general
network setup with two pairs of communicating nodes (e.g.,
ad-hoc) under the assumption that two of the nodes are curious
and two are not. It should be noted that secret key agreement
over an interference channel has not been considered yet and
thereby, our key agreement scheme is a novel scheme which
can not be covered in the previous schemes of key agreement.
Our main contributions are:

1) deriving an inner bound on the secret key capacity region
for the discrete memoryless setup,

2) introducing and comparing different strategies of dis-
tributed power allocation in the Gaussian setup,

3) non-cooperative game theoretic analysis of the dis-
tributed power allocation strategies.

More specifically, we look for the achievable rates of key
pair (K1,K2). We derive an inner bound of the secret key
capacity region. In the achievability scheme, two-step key
generation is used in which a part of the key between each
BS-user pair is established using wiretap codebooks through
the downlink interference channel. The other part of the key is
established through the uplink public channel exploiting secret
sharing codebooks. We show that when the public channel is
not used, our key sharing scenario is reduced to the secure
message transmission though the interference channel which
is considered in [15]. Then, we investigate the case of a
Gaussian interference channel and numerically analyze our
results. In the Gaussian case, we derive several rate regions for
different transmission strategies and power allocation schemes.
It is possible to have either a unidirectional or a bidirectional
communication for the secret key establishment between each
BS-user pair. We consider two main strategies. In a pure
strategy, each BS allocates the whole available power to agree
on a key either over the downlink or over the uplink. In a
mixed strategy, each BS allocates a part of the available power
to agree on a key over the downlink interference channel and
the other part of the available power is utilized to share a key
over the uplink public channel. Two power allocation schemes
are used for mixed strategies; time sharing and artificial noise.
All the key rate regions are compared through a numerical
example.

Non-cooperative game theory proved successful for ana-
lyzing the behavior of non-cooperating links. In [11], the
achievable rates of the peaceful interference channel were
analyzed in a game theory framework. It was shown that
the Nash equilibrium (NE) is in general far form the Pareto
boundary. Here, we consider the interaction between the two
BS-user pairs by a non-cooperative game. Note that there is
no cooperation between the base stations and each BS-user
pair tries to maximize its corresponding secret key rate. In
fact, due to the inherent interference in our model, the chosen
strategy by each BS affects the rate of the other BS secret key.

BS1 BS2

User1

User2

Fig. 1: Confidentiality compromise due to inter-cell interference

To analyze such a bilateral effect, we exploit game theory in
a non-cooperative framework in which each BS chooses its
strategy independently of the other BS strategy. Obviously,
the two BS-user pairs have conflicting interests not only in
terms of interference to each other, but also in terms of
information leakage. We define the utility functions as the
respective secret key rates achieved by pure strategies and
artificial noise. We show that the NE can only be achieved with
pure strategies. Finally, conditions on the channel realizations
and the operating SNR are derived under which only one or
multiple of these strategies are NE. Numerical simulations
show that in general these NE are inefficient.

As an extension of the described scenario, more than two
BS-user pairs can be considered. For K BS-user pairs, the
downlink is modeled with a K-user interfere channel in which,
Interference Alignment technique [12] can be utilized for K ≥
3. The uplink can be modeled with a public channel or in a
more realistic setup, with another K-user interfere channel.

The rest of the paper is organized as follows: in Section
II, the proposed key sharing setup is described. An inner
bound on the secret key capacity region is given in Section
III. The Gaussian interference channel and the corresponding
rate regions are presented in Sections IV. The game analysis
is given in Section V. The paper is concluded in Section VI.
The proofs are given in appendices.

II. SECRET KEY AGREEMENT SETUP

We assume an Interference Channel (IC) with probability
distribution PY1,Y2|X1,X2

, in which BS1 and BS2 govern the
channel inputs X1 and X2 and the outputs Y1 and Y2 are
received by Users 1 and 2, respectively. A noiseless public
channel of unlimited capacity from the users to the base
stations has the role of an insecure feedback channel. First,
the base stations communicate with the users through the IC
and then, the users communicate with the base stations over
the public channel. It is assumed that the base stations make
n uses of the IC, and then, the users use the public channel
once. In the rest of the paper, “forward direction” is referred
to as the direction from the base stations to the users, while
“backward direction” is referred to as the direction from the
users to the base stations. Using the IC in the forward direction
and the public channel in the backward direction, each BS-user
seeks to agree on a key while keeping it concealed from the
other user(s). In the following, the detailed definition of the
key sharing setup as shown in Fig.2 is given.



Step 1) n uses of the IC in the forward direction: For i =
1, 2, ..., n, BS1 and BS2 send X1,i and X2,i as the ith inputs
of the interference channel. Subsequently channel outputs Y1,i
and Y2,i are observed by Users 1 and 2, respectively.
Step 2) Use of the noiseless feedback in the backward di-
rection: Users 1 and 2, respectively, generate F1 and F2 as
stochastic functions of Y n1 and Y n2 and send them over the
public channel to the respective base stations.

After these two steps, keys K1 and K2 are generated by
Users 1 and 2 as stochastic functions of Y n1 and Y n2 , respec-
tively. After receiving (F1, F2) over the public channel, K̂1

and K̂2 are generated by BS1 and BS2 as stochastic functions
of (Xn

1 , F1, F2) and (Xn
2 , F1, F2), respectively. Finally, K1 is

shared between BS1 and User 1 and K2 is shared between
BS2 and User 2.

Remark 1: At Step 2 of the key sharing setup, F1 is actually
generated by User 1 to be used by BS1, but since it is sent
over the public channel, it could be in general used by BS2
for key generation. The same holds for F2. Furthermore, we
assume key K1 as the shared key between the first BS-user
pair. Since K1 and K̂1 are the same with a high probability
(as (2) in Definition 1), both of them can be considered as the
shared key. The same argument is valid for K2 and K̂2.

All the above keys take values in some finite sets. Now, we
state the conditions that should be met in the described secret
key sharing framework.

Definition 1: In the proposed setup, (R1, R2) is an achiev-
able key rate pair if for every ε > 0 and sufficiently large n,
there exists a secret key sharing code such that:

1
nH(K1) > R1 − ε, 1

nH(K2) > R2 − ε (1)

Pr{Ki 6= K̂i} < ε, i = 1, 2 (2)
1
nI(K1;K2, Y

n
2 , F1, F2) < ε (3)

1
nI(K2;K1, Y

n
1 , F1, F2) < ε (4)

Equation (1) means that R1 is the rate of the shared key
between BS1 and User 1 and R2 is the rate of the shared key
between BS2 and User 2. Equation (2) means that each user
and the corresponding base station generate a common key
with small probability of error. Equations (3) and (4) mean that
each user effectively has no information about the secret key
of the other user. This refers to the weak notion of information
theoretic security in which the rate, not the total amount of
leaked information is negligible [14].

Definition 2: The region containing all the achievable key
rate pairs (R1, R2) is the secret key capacity region.

III. MAIN RESULT

We derive an inner bound on the secret key capacity region
of our scheme when the interference channel is discrete
memoryless.

Theorem 1: In the key sharing setup described in Section
II, all rate pairs in the closure of the convex hull of the set
of all pairs (R1, R2) that satisfy the following conditions are
achievable:

BS1 User1

BS2 1 2 1 2, ,Y Y X XP
2
nY

1
nX

1
nY

2
nX User2

2 1 1 1 2( , , , )nH K Y K F F

1 2,F F

2K

Uplink Public channel

1K

1 2 2 1 2( , , , )nH K Y K F F

Downlink Interference 
Channel

Uplink Public channel

Fig. 2: Secret key sharing over an interference channel using noiseless public
channel

R1 ≥ 0, R2 ≥ 0,

R1 ≤ [I(V1f ;Y1)−I(V1f ;Y2|V2f )]++
[I(V1b;X1|V1f )−I(V1b;Y2,V2f |V1f )]+

R2 ≤ [I(V2f ;Y2)−I(V2f ;Y1, |V1f )]++
[I(V2b;X2|V2f )−I(V2b;Y1,V1f |V2f )]+

for random variables taking values in finite sets according to
a distribution of the form:

p(v1f ,v2f ,x1,x2,y1,y2,v1b,v2b)=p(v1f )p(v2f )
p(x1|v1f)p(x2|v2f)p(y1,y2|x1,x2)p(v1b|y1)p(v2b|y2).

The function [x]+ equals x if x ≥ 0 and 0 if x < 0.

The achievability of the key rate region in Theorem 1
is based on two-step key sharing through the IC and the
public channel. At the first step, BS1 and BS2 randomly
generate independent keys K1f and K2f (subscript f stands
for forward) for sharing with User 1 and User 2, respectively.
Then, they encode the keys. V1f and V2f are the auxiliary
random variables relevant to keys K1f and K2f , respectively.
Based on these auxiliary random variables, channel inputs X1

and X2 are generated by BS1 and BS2 and sent though the
IC in n uses of it. The first terms of the bounds on R1 and
R2 correspond to this first step in which wiretap codebooks
are used. After receiving the interference channel outputs by
the users, they first decode the respective keys of the first
step. Then, at the second step, each of the users exploits
the corresponding channel output to share another key with
the intended base station where the public channel is used to
send the required information to the intended base station. The
second terms of the bounds on R1 and R2 correspond to this
step. V1b and V2b are the auxiliary random variables relevant
to the second step keys, K1b and K2b (subscript b stands for
backward) generated by Users 1 and 2, respectively. Secret
sharing codebooks are used at the second step. The detailed
proof of Theorem 1 is given in Appendix I.

Remark 2: If the public channel is not used in our setup,
our result reduces to the secrecy rate region of the interference
channel as Theorem 2 in [15] by substituting V1b = V2b = φ
in Theorem 1.

As described earlier, the pure and the mixed strategies can
be considered by each BS-user pair for the key agreement. In
a pure strategy, each BS-user pair shares a key either in the
forward or in the backward direction but not both. In particular,



a BS-user pair can choose Forward or Backward strategy as a
pure strategy. In the Forward Strategy, a BS-user pair shares a
key in the forward direction, while in the Backward Strategy,
key sharing is performed in the backward direction. For i =
1, 2, BS-user pair i chooses the Forward Strategy (FW) by
setting Vif =Xi, Vib =φ and chooses the Backward Strategy
(BW) by setting Vif = φ, Vib = Yi in Theorem 1. Hence, four
situations can occur according to the chosen strategy by each
BS-user pair and the bounds on (R1,R2) are obtained as:

([I(X1;Y1)−I(X1;Y2,X2)]
+, [I(X2;Y2)−I(X2;Y1,X1)]

+)(FW,FW)

([I(X1;Y1)−I(X1;Y2)]
+, [I(X2;Y2)−I(Y2;Y1, X1)]+) (FW,BW )

([I(X1;Y1)−I(Y1;Y2, X2)]
+, [I(X2;Y2)−I(X2;Y1)]

+) (BW,FW )

([I(X1;Y1)−I(Y1;Y2)]+, [I(X2;Y2)−I(Y2;Y1)]+)(BW,BW) (5)

The chosen strategy by each BS-user pair affects the secret
key rate of the other BS-user pair. For example according
to (5), the bound on R1 in (FW,BW) is strictly greater than
(FW,FW) even though the first BS-user pair has the same
strategy in both of them. That (FW,BW) also results in a
greater bound on R2 compared to (FW,FW) depends on the
value of I(X2;Y1, X1) and I(Y2;Y1, X1). We will numerically
analyze these strategies in the Gaussian case in Section IV.

IV. GAUSSIAN INTERFERENCE CHANNEL

In this section, we consider the described key sharing setup
in the Gaussian Interference Channel (GIC). The GIC input-
output relationships are [15]:

Y1 = X1+ α1X2+N1, Y2 = α2X1+X2+N2, (6)

where the power constraints P1 and P2 are applied at BS1
and BS2, respectively. N1 and N2 are independent zero-mean,
unit-variance Gaussian noise variables. In this section, we
focus on the weak interference channel, i.e., 0 ≤ α2

1 ≤ 1
and 0 ≤ α2

2 ≤ 1. By the standard arguments [16], the result
in Theorem 1 hold in the Gaussian case. We use different
transmission strategies in the following inner bound of the
secret key capacity region for the Gaussian case.

First, we consider the pure strategies. By substituting the
Gaussian random variables in (5), the following corollary is
deduced.

Corollary 1: Using the pure strategies in the Gaussian
channel, the rate regions in (7) (on the top of the next page)
are achievable.

In the equations C(x) = 1
2 log(1 + x).

It should be noted that the bounds in (FW,FW) in which
none of the BS-user pairs uses the public channel can be
improved by using the public channel by one or both of the
BS-user pairs. In the symmetric case where P1 = P2 and
α1 = α2, it can be seen that I(X1;Y2, X2) = I(Y1;Y2, X2)
and hence, the other pure strategies outperform (FW,FW)
meaning that using the public channel is beneficial.

Although beneficial for pure strategies, the public channel
utilization can be even more efficient for mixed strategies. In
the following, we consider time sharing as well as artificial
noise as mixed strategies.

1) Time Sharing: Time sharing is considered in [15] in
the secrecy rate region of the Gaussian interference channel
(without public channel) where the transmission period is
divided into two non-overlapping slots with time fractions
ρ1 ≥ 0 and ρ2 ≥ 0, where ρ1 + ρ2 = 1. In slot 1 with
time fraction ρ1, BS1 sends its confidential message where
BS2 is silent. In slot 2 with time fraction ρ2, BS2 sends its
confidential message while BS1 remains silent. Hence, in each
slot, the channel reduces to a simple Gaussian wiretap channel
[15]. We change the time sharing scheme in [15] in such a way
that in time fraction ρ1, BS2 sends a signal as well which is
not intended as a confidential message but it can be used in
the backward phase using the public channel. In slot 2 with
time fraction ρ2, the symmetric actions are done. Therefore,
in slot 1, we set:

V1f = X1 = N (0, β1P1), V2f = φ,X2 = N (0, β2P2),

and in slot 2,

V2f = X2 = N (0, β2P2), V1f = φ,X1 = N (0, β1P1),

where 0 ≤ β1 ≤ 1, 0 ≤ β2 ≤ 1 are power-control parameters.
Then in the backward phase, we set V1b = Y1, V2b = Y2. By
substituting the auxiliary random variables in Theorem 1 as
described, the corollary below is resulted.

Corollary 2: Using time sharing, the key rate region in (8)
(on the top of the next page) is achievable over all time fraction
pairs (ρ1, ρ2) and power-control parameters 0 ≤ β1, β2 ≤ 1.
Comparing the rate region in (8) with (FW,BW) and (BW,FW)
rate regions in (7) demonstrates that the time sharing strategy
is a combination of (FW,BW) and (BW,FW) strategies in
which power control is performed.

2) Artificial Noise: Artificial noise involves splitting of
the transmission power of one of the base stations into two
parts; the first is allocated to encode the message of the
corresponding base station and the second part is used as
artificial noise to interfere the received signal of the respective
user and, hence, protect the confidential message of the
other user. Thereby this scheme allows the base stations to
cooperate without exchanging their confidential messages [15].
We propose artificial noise which is different from the one in
[15]. In our scheme, the part of the power dedicated to artificial
noise is not wasted but it can be used as a source of secrecy
generation utilizing the backward public channel. When both
base stations perform artificial noise as well as power control,
for i = 1, 2, the auxiliary random variables in Theorem 1 are
substituted as

Xi = Vif +Ai, Vib = Yi

where Xi = N (0, βiPi), Vif = N (0, (1 − λi)βiPi), Ai =
N (0, λiβiPi). In fact, BSi splits its available power into two
parts. A part ((1− λi)βiPi) is allocated to encode the secret
key of the forward direction and the other part (λiβiPi) is used
to confuse its corresponding user about the secret key of the
other BS-user pair. The latter part of power is simultaneously
used to agree on a key in the backward direction. As a result
of Theorem 1, we have the following corollary.



[C(
P1

1+α2
1P2

)−C(α2
2P1)]

+,[C(
P2

1+α2
2P1

)−C(α2
1P2)]

+ (FW,FW )

[C(
P1

1+α2
1P2

)−C(
α2
2P1

1 + P2
)]+,[C(

P2

1+α2
2P1

)−C(
α2
2P1 +α

2
1P

2
2 + α2

1α
2
2P1P2

1+P2+α2
1P2

)]+ (FW,BW )

[C(
P1

1+α2
1P2

)−C(
α2
1P2 +α

2
2P

2
1 + α2

1α
2
2P1P2

1+P1+α2
2P1

)]+, [C(
P2

1+α2
2P1

)−C(
α2
1P2

1 + P1
)]+ (BW,FW )

[C(
P1

1+α2
1P2

)−C( (α2P1+α1P2)
2

1+(1+α2
2)P1+(1+α2

1 )P2+(1−α1α2)2P1P2
)]+,

[C(
P2

1+α2
2P1

)−C( (α2P1+α1P2)
2

1+(1+α2
2)P1+(1+α2

1 )P2+(1−α1α2)2P1P2
)]+ (BW,BW ) (7)

0 ≤ R1 ≤ ρ1[C(
β1P1

1+α2
1β2P2

)−C(
α2
2β1P1

1 + β2P2
)]++ρ2[C(

β1P1

1+α2
1β2P2

)−C(
α2
1β2P2 +α2

2β
2
1P

2
1 + α2

1α
2
2β1β2P1P2

1+β1P1+α2
2β1P1

)]+,

0 ≤ R2 ≤ ρ2[C(
β2P2

1+α2
2β1P1

)−C(
α2
1β2P2

1 + β1P1
)]++ρ1[C(

β2P2

1+α2
2β1P1

)−C(
α2
2β1P1 +α2

1β
2
2P

2
2 + α2

1α
2
2β1β2P1P2

1+β2P2+α2
1β2P2

)]+, (8)

Corollary 3: Using artificial noise, the key rate region in
(9) (on the top of the next page) is achievable over all power-
control parameters 0 ≤ β1, β2 ≤ 1 and the power splitting
parameters 0≤λ1, λ2≤1.

Comparing the rate region in (9) with the rate regions of
pure strategies in (7) shows that performing artificial noise by
both base stations results in a combination of (FW,FW) (when
λ1 = λ2 = 0), (BW,BW) (when λ1 = λ2 = 1), (FW,BW)
(when λ1 = 0, λ2 = 1) and (BW,FW) (when λ1 = 1, λ2 = 0)
in which, power control is performed using the parameters β2
and β2 at BS1 and BS2, respectively.

The effect of using mixed strategies compared to pure
strategies is shown in Fig. 3 for values P1 = P2 = 100, α1 =
α2 = 0.2. Furthermore, the largest secrecy rate region in [15]
(without using public channel) which is obtained performing
artificial noise along with power control is shown in this figure
which demonstrates the effect of using public channel. As
illustrated in Fig. 3, the rate region of Corollary 3, i.e., artificial
noise derived rate region includes the other regions namely
the time sharing rate region and the largest rate region among
the pure strategies which is (BW,BW) in this channel setup.
Regarding pure strategies, it is observed that (FW,FW) leads
to the smallest rate tuple compared to the other three pure
strategies. That is due to the fact that choosing the FW strategy
by each BS-user pair results in smaller rate for the other pair.
That is because by choosing FW strategy, the base station
encodes a key for the respective user which creates more side
information for eavesdropping compared to the case of BW
strategy in which just a random signal is sent. This fact is
reflected in Fig. 3 whereas choosing FW strategy by one pair,
leads to a lower rate for the other pair with a fixed strategy.

V. GAME ANALYSIS AND NASH EQUILIBRIUM

In this section, game analysis and Nash Equilibrium (NE)
existence and uniqueness of the game in normal form are
discussed. As shown earlier, the chosen strategy by each BS-
user pair affects the secret key rate of the other BS-user pair.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 
artificial noise(Corollary 3)
artificial noise (without public channel)
time sharing(Corollary 2)

(FW,BW)

(BW,FW)(FW,FW)

(BW,BW)

Fig. 3: Key rate regions using different schemes

We use game theory to analyse such a two-way effect. Since
each base station chooses its strategy independently of the
other base station, non-cooperative game theory is exploited
for such analysis. The utility functions are defined as the
respective secret key rates of the two BS-user pairs.

Note that static games in normal form can model the selfish
non-cooperative behaviour of the link [13]. Thereby, we under-
stand the impact of cooperation on the achievable performance.
First, NE is considered in the case of pure strategies. Consider
a game in strategic form Γ = ({1, 2},S1 × S2, {R1, R2}) with
players identified as BS1 and BS2, strategy space Sk and
payoff function Rk for player k. Note that different utility
functions for the players could be used depending on the
context. Here, we model the base stations as selfish. A pure
strategy pair s∗1 ∈ S1 and s∗2 ∈ S2 is called Nash equlibrium
if

R1(s∗1, s
∗
2) ≥ R1(s1, s

∗
2) and R2(s∗1, s

∗
2) ≥ R2(s∗1, s2) (10)

for all s1 ∈ S1 and s2 ∈ S2. The strategy space for this
two-player 2 × 2 matrix game is Sk = {FW,BW}. First,
we consider arbitrary values for α1,α2,P1 and P2 in general.



0 ≤ R1 ≤ [C(
(1−λ1)β1P1

1+α2
1β2P2+λ1β1P1

)−C(
(1−λ1)α

2
2β1P1

1+α2
2λ1β1P1+λ2β2P2

)]++[C(
(1−α1α2)

2λ1λ2β1β2P1P2+α
2
1λ2β2P2+λ1β1P1

1+α2
2λ1β1P1+λ2β2P2

)−C(α2
1β2P2)]

+

0 ≤ R2 ≤ [C(
(1−λ2)β2P2

1+α2
2β1P1+λ2β2P2

)−C(
(1−λ2)α

2
1β2P2

1+α2
1λ2β2P2+λ1β1P1

)]++[C(
(1−α1α2)

2λ1λ2β1β2P1P2+α
2
2λ1β1P1+λ2β2P2

1+α2
1λ2β2P2+λ1β1P1

)−C(α2
2β1P1)]

+

(9)
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I (Y1; Y2) ≤ I (X1; Y2)

I (Y1; Y2) ≤ I (X2; Y1)

I (X1; X2, Y2) = I (Y1; X2, Y2) and I (X2; X1, Y1) = I (Y2; X1, Y1)

Fig. 4: Analysis of NE in pure strategies for the game Γ1 in strategic form
for β1 = β2 = 1 and P1 = P2 = 1.

For i = 1, 2, if BSi sets Xi∼N (0, βiPi), then the two-player
2×2 matrix game Γ1 is completely defined using equations in
(7). One immediate observation from the mutual information
expressions in (7) is that the strategy pair (FW,FW ) is a
NE in pure strategies if and only if α2

2β1P1 = α2
1β2P2. In

order to analyze the number of NE, we reduce the parameter
space and consider an interference channel in normal form
with equal transmit power constraint, i.e., β1 = β2 = 1 and
P1 = P2 = P . The following result characterizes the NE in
the parameter space (α1, α2) ∈ [0, 1]2.

Proposition 1: For all α1, α2 ∈ [0, 1]2 there exists at least
one NE in pure strategies for the game Γ1. In medium and
high SNR conditions, P > 1

2 , we have the following:
• For α1 =α2, there are three NE (FW,FW ), (FW,BW )

and (BW,FW ).
• For α1 > α2, there is one NE (FW,BW ).
• For α1 < α2, there is one NE (BW,FW ).

The Proof of Proposition 1 is given in Appendix II.
In Figure 4, the conditions for the NE in pure strategies are

shown for P = 1.
Based on the achievable secret key rate region in Corollary

3, we define our next game Γ2 in strategic form. The strategy
spaces are S1 = [0, 1] for λ1 and S2 = [0, 1] for λ2. The
utilities are the achievable secret key rates in Corollary 3. We
set β1 = β2 = 1 because it maximizes the secret key rates
of BS-user pairs. Note that game Γ2 is a more general game
in strategic form than Γ1. However, it turns out that the best
response strategies of the two players in game Γ2 correspond
to the discrete strategies from game Γ1.

Proposition 2: The NE of the game Γ2 are equal to the NE
of the game Γ1 characterized in Proposition 1.

We give a sketch of the proof. Consider the best response
of player one for the second game Γ2. The secret key rate of

the first BS-user pair as a function of λ1 and λ2 is given by

R1(λ1, λ2)=[C(
(1− λ1)P1

1 + α2
1P2 + λ1P1

)−C(
(1− λ1)α

2
2P1

1 + α2
2λ1P1 + λ2P2

)︸ ︷︷ ︸
A

]++

[C(
(1− α1α2)

2λ1λ2P1P2 + α2
1λ2P2 + λ1P1

1 + α2
2λ1P1 + λ2P2

)−C(α2
1P2)︸ ︷︷ ︸

B

]+

Since [x]+ = max(a, 0), the achievable secret key rate can
have four different values:
• if A ≤ 0, B ≤ 0, then R1 = 0
• if A ≥ 0, B ≤ 0, then R1 = A. In this case, the best

response of the first BS-user pair to maximize R1 is λ1 =
0 (FW) irrespective of λ2, i.e., the strategy of the other
BS-user pair.

• if A ≤ 0, B ≥ 0, then R1 = B. In this case, the best
response of the first BS-user pair to maximize R1 is λ1 =
1 (BW) irrespective of λ2, i.e., the strategy of the other
BS-user pair.

• if A ≥ 0, B ≥ 0, then R1 = A + B. In this case, the
best response of the first BS-user pair is computed by
calculating the first derivative of R1 with respect to λ1.
It is seen that the derivative is independent of λ1. This
induces that the best response for case four depends on
the strategy λ2 and it is either λ1 = 0 or λ1 = 1.

By the above arguments, in all four cases, the best response
is either 0 or 1 and reducing the strategy space to λ1, λ2 ∈
{0, 1}2 does not reduce the number of NE.

In Figure 3 it can be observed that the only pure strategy
on the Pareto boundary is (BW,BW ) which is never a
NE when P > 1

2 . The strategy (FW,FW ) is far from
the Pareto boundary and also the two strategies (FW,BW )
and (BW,FW ) lie clearly within the achievable secret key
region. Therefore, a coordination or cooperation mechanism is
required for the two BS-user pairs to agree on a good operating
point on the boundary, e.g., (BW,BW ).

VI. CONCLUSION

Secret key establishment in a setup including two BS-user
pairs was considered in which the users were honest but
curious. A combination of interference channel transmission
and public channel communication was used to establish the
keys. For discrete memoryless interference channel, an inner
bound on the secret key capacity region was derived. For
the Gaussian interference channel, several rate regions were
obtained using pure and mixed strategies. The rate regions
were compared illustrating that mixed strategies including
time-sharing and artificial noise outperform pure strategies.



Finally, a non-cooperative game was modeled for the pure
strategies and artificial noise. We showed that three of pure
strategies are the only potential Nash equilibria in medium
and high SNR. It was observed that the NE were inefficient
and this motivates to investigate cooperative strategies as the
future work. As another extension of this work, a more general
setup of arbitrary number of BS-user pairs can be considered.
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APPENDIX I: PROOF OF THEOREM 1

We fix the distribution to be of the form as in Theorem 1. As
described in Section II, the secret key sharing is established in
two steps; n uses of the IC and then using the public channel
once by the users. In continue, we describe code construction,
encoding, decoding and the security analysis.

At the first step, wiretap codebooks are used at the base sta-
tions. BS1 and BS2 independently generate typical sequences

vn1f and vn2f , respectively, each with probability

p(vn1f ) =

n∏
i=1

p(v1f,i), p(v
n
2f ) =

n∏
i=1

p(v2f,i).

The numbers of sequences vn1f and vn2f are 2n(r1f+r
′
1f) and

2n(r2f+r
′
2f), respectively, and they are labeled as:

vn1f (k1f , k
′
1f ), k1f ∈ K1f ={1, ..., 2nr1f )}, k′1f ∈K′

1f = {1, ..., 2nr′1f },
vn2f (k2f ,k

′
2f ),k2f ∈K2f = {1, ..., 2nr2f )},k′2f ∈K′

2f ={1, ..., 2nr′2f},

where

r′1f =I(V1f ;V2f , Y2)−ε′, r′2f =I(V2f ;V1f , Y1)−ε′ (11)

in which ε′ > 0 can be arbitrarily small.
For the first step encoding, when a key index k1f is chosen

by BS1, an index k′1f is randomly selected from K′1f and then
for vn1f (k1f , k

′
1f ), the channel input xn1 is sent according to

the distribution p(x1|v1f ). The same is performed by BS2.
For the first step decoding, User 1 declares error unless

there exists a unique vn1f (k1f , k
′
1f ) such that for the received

yn1 , (vn1f , y
n
1 ) ∈ Anε1(PV1f ,Y1). Anε1(PV1f ,Y1) denotes a set of

ε1−jointly typical sequences (vn1f , y
n
1) with respect to the

distribution p(v1f , y1). User 2 acts in the same way. It can
be shown that the first step decoding error probability at User
i is bounded as:

P
(n)
ei,f ≤ ε1 + 2n(rif+r

′
if+ε1−I(Vif ;Yi)).

If we set:
r1f + r′1f < I(V1f ;Y1),

r2f + r′2f < I(V2f ;Y2), (12)

then for i = 1, 2 we choose ε1 = ε
4 and n sufficiently large

such that P (n)
ei,f ≤ 2ε1 = ε

2 .
According to the defined rates in (11), it can be seen that

the first parts of the bounds in Theorem 1 are achievable:

r1f < I(V1f ;Y1)− I(V1f ;Y2|V2f ),

r2f < I(V2f ;Y2)− I(V2f ;Y1|V1f ), (13)

At the end of the first step, each user generates the secret
key of the second step as stochastic function of the received
channel output and sends the required information to the
corresponding base station over the public channel. In this
step, secret sharing codebook for correlated sources is used.
User 1 chooses 2n(I(V1b;Y1)+ε

′′) sequences vn1b from Anε′′(V1b)
and in the symmetric way, User 2 chooses 2n(I(V2b;Y2)+ε

′′)

sequences vn2b.
These sequences are labeled using two-layered random bin-
ning as:
vn1b(k1b, k

′
1b, k

′′
1b), k1b∈K1b = {1, ..., 2nr1b},

k′1b∈K′
1b = {1, ..., 2nr′1b}, k′′1b∈K′′

1b = {1, ..., 2nr′′1b},

vn2b(k2b, k
′
2b, k

′′
2b), k2b∈K2b = {1, ..., 2nr2b},

k′2b∈K′
2b = {1, ..., 2nr′2b}, k′′2b∈K′′

2b = {1, ..., 2nr′′2b},



where:

r1b+r
′
1b=I(V1b;Y1|Y2,V1f ,V2f )+2ε′′, (14)

r′′1b=I(V1b;Y2,V1f ,V2f )−ε′′, (15)
r2b+ r′2b =I(V2b;Y2|Y1,V1f ,V2f )+ 2ε′′, (16)
r′′2b=I(V2b;Y1,V1f ,V2f )−ε′′, (17)

It is seen that for i = 1, 2, rib + r′ib + r′′ib= I(Vib;Yi) +ε′′

and hence, the sequence vnib can be determined with access to
indices (kib, k

′
ib, k

′′
ib).

Now, we describe the coding scheme of the second step. In
this step, User 1 chooses a sequence vn1b which is ε′′−jointly
typical with yn1 . Due to the chosen rate of sequences vn1b,
such sequence exists with negligible error probability. For such
vn1b(k1b, k

′
1b, k

′′
1b), User 1 selects the respective index k1b as

the second part of the secret key with BS1 and sends k′1b over
the public channel. Acting in the same way, User 2 chooses a
sequence vn2b(k2b, k

′
2b, k

′′
2b) where index k2b is selected to be

shared with BS2 and k′2b is sent over the public channel.
For the second step decoding, BSi decodes key kib by

receiving the corresponding index k′ib over the public chan-
nel and the information available at him, i.e., (xni , v

n
if )

for i = 1, 2. Thereby BS1 decodes the sequences vn1b if
(vn1b(k1b, k

′
1b, k

′′
1b), x

n
1 , v

n
1f ) ∈ Anε2(PV1b,X1,V1f

), when such
vn1b exists and is unique. BS2 acts in the symmetric way. It
can be shown that the second step decoding error probability
at BSi is bounded as:

P
(n)
ei,b ≤ ε2 + 2(I(Vib;Yi|Xi,Vif )−r′ib+ε2).

It we set:

r′1b> I(V1b;Y1|X1, V1f ),

r′2b> I(V2b;Y2|X2, V2f ), (18)

then for i = 1, 2 we choose ε2 = ε
4 and n sufficiently large

such that P (n)
ei,b ≤ 2ε2 = ε

2 .
According to (14)-(17), the following rates are achievable

for the second parts of the keys:

r1b < I(V1b;Y1|Y2,V1f ,V2f )− I(V1b;Y1|X1, V1f )

= I(V1b;X1|V1f )−I(V1b;Y2,V2f |V1f ),

r2b < I(V2b;Y2|Y1,V1f ,V2f )− I(V2b;Y2|X2, V2f )

= I(V2b;X2|V2f )−I(V2b;Y1,V1f |V2f ), (19)

The total decoding error probability at BS-user pair i is
bounded as:

P
(n)
ei = P

(n)
ei,f + P

(n)
ei,b ≤ ε.

The achievability of the secret key rates in Theorem 1 can
be deduced according to (13) and (19).

Now, we should check the security conditions of definition
1. We give the proof of (3) and by symmetry, (4) can be
deduced. Since F1 = K ′1b and F2 = K ′2b, equation (3) can be
rewritten as:
I(K1;K2,Y

n
2 ,F1, F2)= I(K1f ,K1b;K2f ,K2b,Y

n
2 ,K

′
1b,K

′
2b)

As it was seen in the encoding step, vn2b and consequently
k2b and k′2b are considered as a stochastic function of yn2 and

there is a Markov chain as vn2b(k2b, k
′
2b, k

′′
2b)−yn2 −(k1f , k1b).

Then the security condition (3) is rewritten as:
I(K1f ,K1b;K2f ,K2b,Y

n
2 ,K

′
1b,K

′
2b) = I(K1f ,K1b;K2f ,Y

n
2 ,K

′
1b)

We have:
I(K1f ,K1b;K2f ,Y

n
2 ,K

′
1b)=I(K1f ;K2f ,Y

n
2 )︸ ︷︷ ︸

A

+I(K1f ;K ′1b|K2f ,Y
n
2 )︸ ︷︷ ︸

B

+ I(K1b;K2f ,Y
n
2 ,K

′
1b|K1f )︸ ︷︷ ︸

C

We analyze the three terms separately.
For term A, we have:

I(K1f ;K2f ,Y
n
2 )

(a)

≤ I(K1f ;V
n
2f , Y

n
2 )

= H(K1f )−H(K1f , V
n
1f |V n

2f , Y
n
2 ) +H(V n

1f |K1f , V
n
2f , Y

n
2 )

(b)
= H(K1f )−H(V n

1f |V n
2f , Y

n
2 ) +H(V n

1f |K1f , V
n
2f , Y

n
2 )

(c)

≤ H(K1f )−H(V n
1f |V n

2f , Y
n
2 ) + nε3

(d)

≤ H(K1f )− nH(V1f |V2f , Y2) + nε4 + nε3
(e)

≤ −nH(V1f |Y1) + nε4 + nε3
≤ nε4 + nε3

In the above equations, (a) and (b) are true because k1f
and k2f are indices of vn1f and vn2f , respectively. To prove
(c), the same approach as Lemma 2 in [15] is used to
show H(V n1f |K1f , V

n
2f , Y

n
2 ) ≤ nε3. (d) can be proved by

exploiting the same approach as Lemma 3 in [15] to show
nH(V1f |V2f , Y2) ≤ H(V n1f |V n2f , Y n2 ) + nε4. (e) is the direct
consequence of the reliable decoding at User 1.

For term B, we have:

I(K1f ;K
′
1b|K2f ,Y

n
2 )

(a)

≤ H(K′
1b|K2f ,Y

n
2 )−H(K′

1b|V n
1f , V

n
2f ,Y

n
2 )

≤ H(K′
1b)−H(K′

1b|V n
1f , V

n
2f ,Y

n
2 )

= H(K′
1b)−H(K1b,K

′
1b,K

′′
1b|V n

1f , V
n
2f ,Y

n
2 )+

H(K1b,K
′′
1b|K′

1b, V
n
1f , V

n
2f ,Y

n
2 )

= H(K′
1b)−H(V n

1b|V n
1f , V

n
2f ,Y

n
2 )+

H(K1b,K
′′
1b|K′

1b, V
n
1f , V

n
2f ,Y

n
2 )

≤ H(K′
1b) +H(K1b)−H(V n

1b|V n
1f , V

n
2f ,Y

n
2 )+

H(K′′
1b|K1b,K

′
1b, V

n
1f , V

n
2f ,Y

n
2 )

(b)

≤ H(K′
1b) +H(K1b)−H(V n

1b|V n
1f , V

n
2f ,Y

n
2 ) + nε5

(c)

≤ H(K′
1b) +H(K1b)− nH(V1b|V1f , V2f ,Y2) + nε6 + nε5

(d)
= −nH(V1b|Y1, V1f , V2f ,Y2) + 2nε′′ + nε6 + nε5
≤ 2nε′′ + nε6 + nε5

In the above equations, (a) is true because k1f and
k2f are indices of vn1f and vn2f , respectively. To prove (b),
the same approach as Lemma 2 in [15] is used to show
H(K ′′1b|K1b,K

′
1b,K1fK2f ,Y

n
2 ) ≤ nε5. (c) can be proved by

exploiting the same approach as in Lemma 3 in [15] to show
nH(V1b|V1f , V2f ,Y2) ≤ H(V n1b|V n1f , V n2f ,Y n2 )+nε6. (d) is the
direct result of rate definition in (14).

For term C, we have:



I(K1b;K2f ,Y
n
2 ,K

′
1b|K1f ) ≤ I(K1b;K1f ,K2f ,Y

n
2 ,K

′
1b)

(a)

≤ I(K1b;V
n
1f , V

n
2f ,Y

n
2 ,K

′
1b)

= H(K1b)−H(V n
1b,K1b|V n

1f , V
n
2f ,Y

n
2 ,K

′
1b)+

H(V n
1b|V n

1f , V
n
2f ,Y

n
2 ,K

′
1b,K1b)

(b)

≤ H(K1b)−H(V n
1b,K1b|V n

1f , V
n
2f ,Y

n
2 ,K

′
1b) + nε5

(c)
= H(K1b)−H(V n

1b|V n
1f , V

n
2f ,Y

n
2 ,K

′
1b) + nε5

= H(K1b)−H(V n
1b|V n

1f , V
n
2f ,Y

n
2 )+

I(V n
1b;K

′
1b|V n

1f , V
n
2f ,Y

n
2 ) + nε5

≤ H(K1b)−H(V n
1b|V n

1f , V
n
2f ,Y

n
2 ) +H(K′

1b) + nε5
(d)

≤ H(K1b) +H(K′
1b)− nH(V1b|V1f , V2f ,Y2) + nε6 + nε5

(e)

≤ −nH(V1b|Y1, V1f , V2f ,Y2) + 2nε′′ + nε6 + nε5

≤ 2nε′′ + nε6 + nε5
In the above equations, (a) and (b) can be resulted from the
counterpart equations in deriving term B. (c) holds since k1b
is one of the indices of vn1b. (d) and (e) are deduced from the
same arguments as in (c) and (d) in deriving term B.

Now, the total security condition (3) is obtained as:

I(K1f ,K1b;K1f ,Y
n
2 ,K

′
1b) ≤ n(ε4 + ε3 + 4ε′′ + 2ε5 + 2ε6)

(20)

By substituting ε′′ = ε
10 and εi = ε

10 for i = 3,..,6, the
security condition (3) is satisfied as:

I(K1f ,K1b;K1f ,Y
n
2 ,K

′
1b) ≤ nε.

As the last step of proving the achievability of the rates in
Theorem 1, we should demonstrate the independence of the
keys k1f and k1b. When analyzing term C of the security
condition, we showed that:

I(K1b;K2f ,Y
n
2 ,K

′
1b|K1f ) ≤ I(K1b;K1f ,K2f ,Y

n
2 ,K

′
1b)

≤ 2nε′′ + nε5 + nε6,

and consequently:

I(K1b;K1f ) ≤ nε.

Hence, we have:

H(K1f ,K1b) ≥ H(K1f ) +H(K1b)− nε.

This completes the proof of Theorem 1.

APPENDIX II: PROOF OF PROPOSITION 1

In order to analyze the NE for game Γ1, the inequalities for
the NE are studied. The inequalities for (FW,FW ) directly
lead to the condition that α2

2 = α2
1 for all P . The conditions

for (BW,BW ) correspond to

Λ1(α1,α2)=
P 2(α2+α1)2

1+(1+α2
2)P+(1+α2

1)P+(1−α1α2)2P 2
(21)

≤ min(α2
1, α

2
2) · P

1 + P
. (22)

The function Λ1 in (21) is symmetric and monotonically
increasing with α1 and α2:

∂Λ1(α1, α2)

∂α1
=

2P 2(α1 + α2)(Pα2
2 + P + 1)(P (1− α1α2) + 1)

(P 2α2
1α

2
2 − 2P 2α1α2 + P 2 + P (α2

1 + α2) + 2P + 1)2
> 0

(23)

The function in (22) is increasing in α1 and α2 as well. It
follows that if the inequality in (22) is not fulfilled for α1 =
α2 = 1, then it will not be fulfilled for any smaller α1, α2.
Therefore, (BW,BW) is never a NE for (α1, α2) 6= (0, 0) as
long as

4P 2

1 + 4P

1 + P

P
> 1 ⇐⇒ P >

1

2
. (24)

The conditions for the case (FW,BW) are:

α2
2P

1 + P
≤ Λ1(α1, α2) and α2 ≤ α1. (25)

Since we know from (23) that Λ1(α1, α2) is a monotonically
increasing function in α1, we see that α2 ≤ α1 implies α2

2P
1+P ≤

Λ1(α1, α2) for P ≥ 1
2 . Therefore, only the second condition

in (25) is relevant. The symmetric discussion holds for the
case (BW,FW).
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