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ABSTRACT
To mitigate spoofing attacks targeting global navigation satellite
systems (GNSS) receivers, one promising method is to rely on al-
ternative time sources, such as network-based synchronization, in
order to detect clock offset discrepancies caused by GNSS attacks.
However, in case of no network connectivity, such validation refer-
ences would not be available. A viable option is to rely on a local
time reference; in particular, precision hardware clock ensembles
of chip-scale thermally stable oscillators with extended holdover
capabilities. We present a preliminary design and results towards a
custom device capable of providing a stable reference, with smaller
footprint and cost compared to traditional precision clocks. The sys-
tem is fully compatible with existing receiver architecture, making
this solution feasible for most industrial scenarios. Further integra-
tion with network-based synchronization can provide a complete
time assurance system, with high short- and long-term stability.
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1 INTRODUCTION
Ubiquitous GNSS receivers provide precise location and time to a
wide gamut of applications, beyond navigation, for mobile com-
munication systems. The inherent vulnerability of GNSS signals
allows attackers to produce adversarial signals that purposely alter
the GNSS receiver position, velocity, and timing (PVT) solution.
Broad availability of affordable Software Defined Radios (SDRs)
and open-source tools for GNSS spoofing/meaconing pose a sig-
nificant threat to GNSS receivers deployed in critical applications
[9, 15, 18]. Authentication methods, such as the Galileo Navigation
Message Authentication (NMA), do not fully addresses the problem
[17], as they do not preclude attacks that relay/replay legitimate
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signals [13, 19, 20]. Moreover, NMA is not backwards compatible
with existing receiver hardware and requires changes to the struc-
ture of the signal in space. Several countermeasures were proposed,
leveraging signal characteristics, e.g. [3], the receiver’s attitude [4]
or validation of the PVT solution through alternative position and
time sources [11, 14, 16, 21].

Attackers tampering with the PVT solution produce noticeable
effects on the GNSS receiver clock, independently of their specific
target. Countermeasures based on the observation of the receiver
clock state could be agnostic to the exact attack form deployed or the
attacker’s objective. Considering the attack detection, intuitively,
it is reasonable to compare the progression of time in the GNSS
receiver against a trusted reference (e.g., remote time servers) to
monitor for changes that would hint to an adversarial action. In
fact, modern receivers are rarely used as stand-alone devices, and
they are often integrated into complex devices with different types
of network connectivity, allowing fusion with other sensor- and
Internet-provided data.

On the other hand, the receiver might be prevented from access-
ing network based synchronization services for extended periods
of times (e.g., scarce network coverage or even adversarial denial
of service). The fall-back approach for the GNSS-enabled system is
to rely on on-board crystal oscillators. Performing a so-called ’time
test’ is not a new idea [2, 10, 12], but integration of cheap clock ref-
erences with the GNSS receiver is challenging due to environment-
dependant effects, such as temperature variations, or the precision
of the oscillator itself. To overcome some of these limitations, one
could rely on improved reference clocks (e.g., oven- or double oven-
compensated oscillators or rubidium references). But this comes
at an increase in cost, footprint and power consumption, making
such an not feasible for many mobile platforms.

Ultimately, an option is to use ensembles of multiple, local, chip-
scale high precision hardware reference oscillators. This approach
compensates for errors caused by manufacturing inaccuracies, ther-
mal deviations or frequency instability that affect single references.
In [7], an optimal method based on Kalman filters was presented,
to produce clock ensembles, improving the long-term stability over
a single reference up to one order of magnitude. By adopting stabil-
ity improvement mechanisms, our aim is to provide a stable clock
reference the receiver can use to evaluate the state of the GNSS
time information and by extension detect GNSS attacks.

This work investigates the feasibility of a solution based on
precision chip-scale clocks to provide a detection (and recovery)
system from GNSS attacks (spoofing, replaying/relaying). Initial
results based on our system, using a single-precision chip-scale,
oven-compensated oscillators (OCXOs) are presented. The device
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is tested in a realistic scenario, using the Texas Spoofing Battery
(TEXBAT) trace files [8] to spoof a commercial GNSS receiver. Addi-
tionally, we present a preliminary design with multiple oscillators,
to achieve a low-power, high-stability clock ensemble that can be
used to provide cost-effective (compared to existing time assur-
ance systems based on chip-scale atomic clocks), high-performance
reference for GNSS attack/fault detection.

2 DESIGN
GNSS receivers can benefit from high-precision stable clocks to im-
prove their performance. Ultra-stable clocks allow GNSS receivers
to operate with a reduced number of satellites, providing a PVT
solution even if less than four satellites are in view; although with
some limitations for extremely long integration times [5]. On the
other hand, such stable clocks are expensive, bulky, and often not
suited for embedded computing devices or many relatively small-
footprint mobile devices. Low-cost oscillators can be used, but they
have poor stability and require continuous tuning. For this reason,
they are not stable enough for attack detection. In contrast, chip-
scale OCXOs provide adequate performance as clock references, in
a compact and power-efficient form factor.

This is why we develop a custom platform based on commer-
cially available components, designed to work in tight integration
with the GNSS receiver. The clock states (phase offset, frequency
offset and frequency drift) of the GNSS receiver are continuously
tested against the custom reference, to detect misbehavior effects
on the GNSS receiver clock. The design estimates the relative phase
between the 1-Pulse-per-Second (PPS) signal (which is synchronous
to the top of the second of the GNSS PVT solution) against a 1-PPS
clock obtained from a free-running hardware clock. Any deviation
of the GPS time induced by the attacker causes a phase change to
the victim receiver PPS. If such variation is beyond the normal drift
rate of the reference clock, it can be an indication of an attack.

The device is implemented with mixed clock domain blocks in a
Field Programmable Gate Array (FPGA). The FPGA implementation
allows for high-resolution measurements of the phase deviation,
with predictable latency. Figure 1 shows the implementation of
the detection and control logic. The reference high-precision, chip-
scale OCXO is down-converted to produce the 1-PPS reference
signal, and up-converted with a Phase-Locked Loop (PLL) clock
synthesizer to provide the fast measurement clock. The reference
OCXO has a frequency of 10MHz, the measurement clock derived
from the PLL is 200MHz, allowing a resolution of 5 ns.

To precisely track the phase offset, a Kalman filter is designed
as described in [6]. Due to its low computational complexity, the
filter can be computed on embedded hardware. At this stage, for
development, the computation is offloaded to the acquisition laptop.

3 EXPERIMENTAL SETUP
The proposed design is implemented on an Intel Altera MAX10
FPGA. The phase detection and measurement system is imple-
mented in hardware and validated up to a frequency of 200Mhz.
The receiver tested is a u-Blox C099-F9P high-performance dual-
band receiver, configured to operate on a single frequency of the
GPS constellation only, to comply to the TEXBAT scenarios. The
PPS frequency is 1Hz, commonly used in industrial applications.

The spoofing signals are generated using a Nuand BladeRF SDR,
that transmits raw I/Q samples from the TEXBAT scenario under
test. Figure 2 shows the layout of the experimental testbed. The
phase measurements obtained from the MAX10 FPGA are stored on
the acquisition computer and validated against the Agilent counter.
Both instruments use the same high-precision chip-scale OCXO
(Allan deviation 𝜎𝑦 (𝜏) = 8e−11) reference to produce comparable
measurements.

4 PRELIMINARY RESULTS
The proposed systemwas tested against two time-focused scenarios
from TEXBAT (scenarios ds-2 and ds-3). After the receiver obtains
a legitimate PVT solution, the attack starts roughly at sample 100;
once the phase offset reaches 2 µs (Figure 3a), the target is consid-
ered completely captured. Our design detects adversary-induced
errors in accordance with [8], demonstrating the validity of the
presented approach. Figure 3b shows the abnormal change in the
phase offset, as detected by the proposed method, revealing the
attacker-induced drift of the GNSS clock. The total deviation al-
lowed to avoid a false positive detection depends on the specific
application (e.g., power grid synchrophasors must not drift more
than 25.6 µs [1]). The stability of our reference clock suggests that
the detection threshold could be improved, but initial observations
suggest that the phase noise (denoted by the slope of the phase
measurements) of the embedded PLL limits the detection factor.
The observed phase drift of the PLL output against a rubidium
reference is ≈ 90 ns/s, establishing the lower detection bound for
our proposed system.

5 CONCLUSIONS AND FUTUREWORK
The initial design can detect phase changes in the PPS edge against
our high-precision reference, with a 5 ns resolution, and stability of
90 ns/s. Limitations due to the PLL phase stability were identified
and possible solutions are under investigation.

Ongoingwork:Adesign based on ensembles of multiple precise
clock references is under development, with expected stability im-
provement by an order of magnitude compared to the single-clock
design evaluated here. Based on a non-uniform sampling Kalman
filter, the ensemble aims at providing a long-term stable reference
for detecting GNSS spoofing attacks. Figure 4 presents a prelimi-
nary overview of the hardware ensemble. A group of free-running
OCXO clocks is used to fine-tune a voltage-controlled OCXO that
provides a system-wide clock for the measurement, estimation and
misbehaviour detection. The hardware implementation of such sys-
tem would provide extended holdover capabilities and result in a
computationally efficient and cost-effective solution. This would
strengthen GNSS receivers against spoofing attacks. Integration
of this system with network-based time provision systems, would
provide a complete solution for time based GNSS attack detection.
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Figure 1: Block diagram of the system: the phase offset is used to detect potential GNSS attacks.
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Figure 2: Experimental setup used to test the design. The Ag-
ilent counter measurements are used to validate the system
stability and accuracy.
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Figure 3: Spoofed receiver phase variation against a local
high precision reference.
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