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Abstract—In this paper, we present an achievable security
scheme for an interference channel with arbitrary number of
users. In this model, each receiver should be able to decode
its intended message while it should remain ignorant regarding
messages intended for other receivers. Our scheme relies on
transmitters to collectively ensure the confidentiality of the
transmitted messages using a cooperative jamming technique
and lattice alignment. The Asymmetric compute-and-forward
framework is used to perform the decoding operation. The
proposed scheme is the first asymptotically optimal achievable
scheme for this security scenario which scales to arbitrary
number of users and works for any finite-valued SNR. Also, our
scheme achieves the upper bound sum secure degrees of freedom
of 1 without using external helpers and thus the achievable rates
lie within constant gap from sum secure capacity.

I. INTRODUCTION

Wireless communication channels are susceptible to leakage
and interception by illegitimate users. Oftentimes, crypto-
graphic algorithms such as the public key systems (PKI)
are used to provide confidentiality. Many of such techniques
rely on trapdoor functions whose security are questioned by
advances in quantum computers and artificial intelligence. On
the other hand, the information theoretic tools such as i.i.d.
random codes [1], [2], promise unconditional security. These
techniques have been vastly studied in different communica-
tion models including interference channels [3]. In the last
decade, studies showed that despite promising performance of
random codes in achieving reliable transmission, these codes
perform poorly in security scenarios specially in high SNR
regime. In [4], [5] it was shown that the i.i.d. Gaussian random
codes achieve zero sum secure degrees of freedom as SNR
approaches infinity. To combat this limitation, structured codes
have been incorporated in several security scenarios in which
they outperformed i.i.d. Gaussian random codes [4], [6], [7]. In
[8], Babaheidarian et al., presented an achievable scheme using
structured lattice codes which was shown to provide weak
secrecy (defined in [9]) in a two-user interference channel
with weak or moderately weak interference power levels. The
advantage of their scheme compared to prior research on real
alignment [4] is that the scheme in [8] maintains security
at any finite SNR value and the secure rates linearly scale
with log(SNR). Furthermore, they showed their scheme is
asymptotically optimal. However, the scheme in [8] assumed
only a two-user scenario and the direct generalization to
arbitrary number of users is not straightforward.

In this work, we present a new achievable secure scheme
for an interference channel with arbitrary number of users
with K > 2 users in which interference level is within
weak or moderately weak regimes. Inspired by [8], [10],
[11], our scheme utilizes the compute-and-forward decoding
framework to handle finite SNR values as opposed to real-
alignment schemes in [5], [7] which applied a maximum
likelihood decoder. Our scheme takes advantage of a two-
layer codebook structure in which the inner layer uses a set of
nested lattice codebooks and the outer layer uses i.i.d. repeated
codes. The novelty of our scheme is that the proposed scheme
scales to any number of users (K > 2) and works at any
finite SNR value. Also, we show that our scheme achieves
optimal sum secure degrees of freedom of 1 asymptotically.
Thus, our achievable sum secure rate is within constant gap
from sum secure capacity in finite SNR regime. It is worth
to mention that unlike prior schemes in [4] and [12], in
our scheme, transmitters collectively ensure confidentiality of
their messages at every unintended receiver without using an
external helper.
The rest of the paper is organized as follows: Section II states
the problem formulation, Section III presents our achievability
results, Section IV provides proof of achievability and finally
concluding remarks are made in Section V.

II. PROBLEM STATEMENT

In this paper, we focus on the problem of simultaneous
transmission of confidential messages to their intended re-
ceivers in a K- user (transmitter-receiver pair) interference
channel where K is an arbitrary even number and K > 2. For
the case with odd number of users, one dummy user is added
1. At Receiver i (1 ≤ i ≤ K), the channel output is denoted as
Yi and at Transmitter j the input to the channel is denoted as
Xj . The channel gain between Transmitter j and Receiver i is
denoted as hji, and lastly, noise zi at Receiver i is modeled by
an i.i.d. random Gaussian vector with zero mean and identity
covariance matrix. The relation between input and output of
the channel is defined as

Yi = hiiXi +
∑
j 6=i

hjiXj + zi ∀i ∈ {1, . . . ,K} (1)

Our assumption is that the channel gains are real valued and

1Note that this condition does not reduce the total degrees of freedom since
the dummy user can also transmit secure data.
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Fig. 1: The K-user Gaussian interference channel model with
confidential messages.

known by the transmitters. Fig. 1 illustrates the communi-
cation model. We assume that the transmitted and received
codewords, i.e., Xj and Yi are of length N , for all i, j ∈
{1, . . . ,K}. Transmitter j has an independent confidential
message for receiver j which is denoted as Wj and is uni-
formly distributed over the set {1, 2, . . . , 2NRj}. Transmitter
j encodes its message to codeword Xj through a stochastic
encoder Ej subject to a power constraint ‖Xj‖22 ≤ NP , where
P is a positive number. Also, Receiver i is equipped with
decoder Di which maps codeword Yi to an estimate of its
message: Ŵi = Di(Yi).

Definition 1 (Achievable secure rates): For a K-user Gaus-
sian interference channel with independent confidential mes-
sages, a non-negative secure-rate tuple (R1, R2, . . . , RK) is
achievable with weak secrecy, if for any ε > 0 and sufficiently
large N , there exist encoders {Ej}Kj=1 and decoders {Di}Ki=1

such that ∀i, j ∈ {1, 2, . . . ,K}:

Prob (Di(Yi) 6= Wi) < ε, (2)

Rj ≤
1

N
H(Wj |Y1, . . . ,Yj−1,Yj+1, . . . ,YK) + ε (3)

III. MAIN RESULTS

In this section, we present the achievable secure rates for the
interference channel model defined in Section II. We define a
few notations to present the secure rates in a closed form.
Assume R`comb is an achievable rate at which confidential
message W` can be reliably decoded at Receiver ` without
any security constraint. Also, assume P`,m ≥ 0 is the power
allocated by Transmitter ` to encode the m-th component of
confidential message W` where total number of components
is set to a positive integer M . Assume m∗ is the index of
the component associated with the densest lattice codebook.
Additionally, the power allocated by Transmitter ` to encode
the m-th component of the jamming codeword is denoted by
P J`,m. Also, assume set SM ⊂ {1, 2, . . . ,M} where |SM |M → 1
for large enough M . Then, we have

Theorem 1 (Achievable secure rates): A non-negative rate
tuple (R1, R2, . . . , RK) which satisfies the following inequal-

ity for all ` ∈ {1, . . . ,K}, is achievable with weak secrecy
for the defined interference channel model:

R` < R`comb−

max
i
i6=`

[
log


M∑

m∈SM
|SM |
M
→1

h2`,iP`,m + h2K−`+1,iP
J
K−`+1,m

h2K−`+1,iP
J
K−`+1,m∗


]

(4)

Note that the supremum of all such rates over power alloca-
tions P`,m and P J`,m, for all (`,m), are also achievable so long
as the power the power constraints given in Section IV are sat-
isfied. Our achievable scheme utilizes nested lattice codebooks
and random i.i.d. repetitions to generate two-layered lattice
codewords. Transmitters apply beam-forming operation on
message codewords as well as jamming codewords to ensure
the security of the confidential messages at every unintended
receiver. Note that despite the cooperative jamming scheme,
no online communication among the transmitters is required.

Corollary 1: Following our scheme, the optimal sum secure
degrees of freedom (s.s.d.f.) of 1 is achievable for an interfer-
ence channel featuring weak or moderately weak interference
power level with arbitrary K > 2 users, i.e.,

s.s.d.f =

∑K
`=1R`

1
2 log(1 + P )

≤ 1 (5)

Proof of Corollary 1 is presented in Subsection IV-E of the
extended version in [13].

IV. ACHIEVABILITY SCHEME

We prove the achievability result presented in Theorem
1 by describing the codebook construction followed by the
encoding and decoding operations. Due to space limitation,
proof of weak secrecy is provided in Subsection IV-D of the
extended version in [13].

A. Codebook construction

Our codebook and encoding process is based on the idea
of passive cooperation among the transmitters. The passive
cooperation happens when each transmitter is a sender of
its own message but also acts as a helper to protect the
confidentiality of another user’s message at the illegitimate
receivers. For instance, in the K-user setting, Transmitter 1
helps protecting Transmitter K’s message at every receiver
except receiver K, and Transmitter 2 does the same job for
Transmitter K − 1 and so forth. The reason we call this
cooperation passive is that it does not require transmitters to
exchange online messages so long as they know the channel
state and the index of the transmitter they need to help which
can be agreed on in the initial acquisition and prior to the
connected mode. Broadly speaking, Transmitter i protects its
confidential message with the help of Transmitter K − i + 1
which generates a random jamming codeword that is beam-
formed to align with the components of the i-th message
codeword at every receiver, except Receiver i, simultaneously.



Since the same pair of codewords needs to be simultaneously
aligned at multiple receivers with different channel gains,
perfect alignment between the two codewords is not possible.
However, partial alignment across multiple components can
still happen. It can be shown that if the messages are encoded
across sufficiently large number of independent components,
partial alignment approaches perfect alignment, asymptotically
[14]. Hence, the confidential messages and the jamming
signals are split into M independent components where M
is a large number. Each component is encoded separately
and the superposition of all components are transmitted over
the channel. The codebooks used for encoding confidential
messages and the jamming signals form a nested lattice
structure in which the jamming codewords are selected from
finer lattice codebooks compared to message codebooks. The
reason is that the jamming signal needs to get aligned with any
possible realization of the confidential message codeword at
unintended receivers. A pair of a coarse and a fine lattice sets
are used to encode each individual confidential message and
jamming signal. Assume that the pair used to encode the m-th
component of the confidential message j at Transmitter j is
denoted as (Λmj ,Λ

m
f,j). Also, the associated lattice pair used

for protecting the m-th component of confidential message
K − j + 1 is denoted as (ΛmJ,j ,Λ

m
fJ,j). For each component

m ∈ {1, . . . ,M} the following nested lattice relation holds
amongst all the participating lattice sets:

Λ ⊆ ΛmK ⊆ ΛmK−1 ⊆ . . .Λm1 ⊆ ΛmJ,K ⊆ . . .ΛmJ,1 ⊆ Λmf,K

⊆ . . .Λmf,1 ⊆ ΛmJf,K ⊆ . . .ΛmJf,1 (6)

The coarse lattice sets are scaled such that their second
moments are equal to σ2

m,K , . . . , σ
2
m,1, σ

2
Jm,K , . . . , σ

2
Jm,1, re-

spectively. Also, the fundamental Voronoi region of the coarse
lattice associated with the m-th component of message i de-
noted as Vmi and the one associated with the m-th component
of the jamming signal generated at Transmitter i is denoted
as VmJ,i. The center of a corset of the fine lattice Λmf,i is an
n-length random vector (lattice word) and is denoted by tm,i.
The inner codebook used for encoding the m-th component
of message i is defined as the union of all realizations of
this vector, i.e., Lm,i , {tm,i|tm,i ∈ Vmi }. Similarly, the
inner codebook for the jamming signal is defined as LJm,i ,
{um,i|um,i ∈ VmJ,i}, where um,i is also an n-length lattice
word associated with the center of a corset of fine lattice ΛmJf,i.
To construct an outer codeword, we use i.i.d. random repetition
of the inner codeword. This step is done to take advantage
of Packing Lemma [15] in the proof of secrecy. Consider a
probability distribution P (tm,i) over the elements of codebook
Lm,i. Transmitter i draws B independent realizations of the
inner codeword tm,i according to distribution P (tm,i). These
n-length lattice words are concatenated to form an N , n×B
length vector which is a realization of the outer codeword t̄m,i.
To construct the corresponding outer codebook, Transmitter i
generates 2NR

i
comb,m realizations of the outer codeword t̄m,i.

This outer codebook is denoted as Cm,i. Similarly, the outer
codebook generated to encode the m-th component of the

jamming signal at Transmitter i is denoted as CJm,i and the
random vector representing its outer codeword is denoted as
ūm,i.
The constructed outer codebooks are partitioned to emulate the
wiretap code [2]. To do this, Transmitter i randomly partitions
codebook Cm,i into 2NRm,i bins of equal sizes. Each bin
(m, i) is given an index wm,i where wm,i ∈ {1, . . . , 2NRm,i}.
These indices are essentially independent sub-messages of the
confidential message Wi. The transmitter chooses the non-
negative rates Rm,i such that Ri =

∑M
m=1Rm,i, where the

secure rate Ri is set to

Ri , Ri
comb −max

`
` 6=i

[
log


M∑
m∈S
|S|
M
→1

h2
i`Pi,m + h2

K−i+1,`P
J
K−i+1,m

h2
K−i+1,`P

J
K−i+1,m∗


]

(7)
where for all m,m∗ ∈ M , and i ∈ {1, 2, . . . ,K} and set
SM (as defined in Section III), quantities Pi,m and P Ji,m are
positive values and they represent the power allocations among
the corresponding confidential message and jamming signal
components, respectively. These quantities are formulated in
Subsection IV-B. Also, Ricomb ,

∑M
m=1R

i
comb,m.

Additionally, for each component of the confidential message
i and the jamming signal, Transmitter i generates a random
dither outer codeword d̄m,i and d̄Jm,i, respectively. Dithers
are drawn uniformly random from the corresponding Voronoi
regions, Vm,i and VJm,i. Dithers are public information and
after selection are provided to all parties. In the following,
we present the encoding operation at Transmitter i which
also protects Transmitter K − i+ 1’s confidential message at
receivers 1, 2, . . . ,K − 1. Encoding at the other transmitters
is performed in a similar fashion.

B. Encoding

Transmitter i splits the confidential message wi ∈
{1, . . . 2NRi} into M , T 2K−2 independent sub-messages,
where T is a large number. The m-th sub-message is denoted
as wm,i ∈ {1, . . . , 2NRm,i}. To encode this sub-message,
Transmitter i randomly picks an outer codeword t̄m,i from
the corresponding outer codebook Cm,i. Next, the selected
codeword is mixed with a random dither d̄m,i according to the
following equation x̃m,i , [t̄m,i+ d̄m,i] mod Λmi . The mod-
ular operation in dithering step is done blockwise over each
n-length block, separately. Similarly, the jamming codeword
x̃Jm,i is defined. Note that the lattice set associated with the
jamming codewords are denser than the message codewords.
In the next step, the beam-forming operation is performed
over each component codeword. Note that each component
is sent over a different beam-forming dimension where the
total number of the dimensions is M . The idea is to align the
jamming signal and the confidential message codeword across
many such dimensions at unintended receivers. The precoder
applied to codeword x̃m,i is denoted as f(m, i,K− i+1,H),
where H = (h1,h2, . . . ,hK) is the matrix of channel gains.
The precoder f is a mapping that takes sub-message indices
(m, i) and channel gain matrix H as inputs and outputs a scalar



value. This mapping ensures that the resulting codewords
are rationally independent for all channel gains expect for a
small Lebesgue measure. Transmitter i applies the individual
precoders over each component codeword and forms the
superposition codeword xi over the channel, where

xi ,
M∑
m=1

x̃m,if(m, i,K − i+ 1,H) (8)

Similarly, a precoder is applied to the jamming codeword to
protect the confidential message of Transmitter K− i+1, i.e.,

xJi ,
M∑
m=1

x̃Jm,ig(m, i,K − i+ 1,H) (9)

The superimposed transmitted codeword Xi , xi + xJi
satisfies the power constraint, i.e., ‖Xi‖22 ≤ NP . Let us
define Pm,i , σ2

m,i|f(m, i,K − i + 1,H)|2 and Pi =∑M
m=1 Pm,i. Similarly, for the jamming codeword, define

P Jm,i , σ2
Jm,i|g(m, i,K− i+ 1,H)|2 and P Ji =

∑M
m=1 P

J
m,i.

Transmitter i allocates power between jamming power and
message power such that Pi + P Ji ≤ P . Additionally, the
coarse lattice sets associated with every jamming codeword is
scaled such that for ∀i ∈ {1, . . . ,K}, we have

h2K−i+1,iP
J
K−i+1 ≤ 1 (10)

Note that the above condition is essential to achieve sum
secure degrees of freedom of 1 and without this condition,
the achievable sum secure degrees of freedom would reach
K
K+1 . The precoder mapping f(m, i,K−i+1,H) is a product
of powers of channel gains between both Transmitters i and
K − i+ 1 and the receivers, i.e.,

f(m, i,K − i+ 1,H) = (hr1i1h
r2
i2 . . . h

ri−1

i,i−1h
ri
i,i+1 . . . h

rK−1

iK )×

(hrK
K−i+1,1h

rK+1

K−i+1,2 . . . h
rK+i−1

K−i+1,i−1h
rK+i

K−i+1,i+1 . . . h
r2K−2

K−i+1,K)
(11)

and

g(m, i,K − i+ 1,H) = (hr1i1 . . . h
rK−i
i,K−ih

rK−i+1

i,K−i+2 . . . h
rK−1

iK )×

(hrK
K−i+1,1h

rK+1

K−i+1,2 . . . h
rK−i
K−i+1,K−ih

rK−i+1

K−i+1,K−i+2 . . . h
r2K−2

K−i+1,K)
(12)

The exponents (r1, r2, . . . , r2K−2) are computed using a one-
to-one mapping φ(m) that takes the m-th beam-forming
dimension to the 2K−2-length tuple exponent where each ex-
ponent is one of the possible T dimensions. In other words, we
have: φ(m) : {1, . . . ,M} → {1, . . . , T}× {1, . . . , T}× · · · ×
{1, . . . , T}, and for every m ∈ {1, . . . ,M} there exists a non-
negative 2K − 2 length tuple such that (r1, r2, . . . , r2K−2) =
φ(m), where rj ∈ {1, 2, . . . , T}.

C. Decoding

Decoding at each receiver follows asymmetric compute-and-
forward technique used in [12]. In the following, we describe
the decoding process at Receiver i. Other receivers act in a
similar manner.
Receiver i observes the scaled lattice codeword associated with

its own message plus a set of unintended codewords aligned
with jamming codewords plus effective noise as

Yi = hiixi +

K∑
`=1
` 6=i

(h`ix` + hK−`+1,ix
J
K−`+1)

+ hK−i+1,ix
J
K−i+1 + zi (13)

Due to asymptotic alignment [14] along many beam-forming
dimensions, the collections of the confidential and the jam-
ming codewords participating in the second term in (13) are
mutually aligned. Also, note that due to the constraint in (10),
the power of the third term falls below noise power (assuming
all noise powers are normalized). Also, this term includes only
a jamming signal which is of no use to Receiver i. Note that
the condition in (10) is aligned with weakly and moderately
weak interference definition in [8]. Therefore, Receiver i treats
the third term as an additional noise term and the normalized
effective noise term z̃i is defined as

z̃i ,
1√

1 + h2K−i+1,iP
J
K−i+1

(hK−i+1,ix
J
K−i+1 + zi) (14)

As a result, Receiver i effectively observes a K-user Multiple
Access Channel (MAC) at its end, i.e.,

ỹi ,
hii√

1 + h2K−i+1,iP
J
K−i+1

xi + z̃i

+
1√

1 + h2K−i+1,iP
J
K−i+1

K∑
`=1
` 6=i

(h`ix` + hK−`+1,ix
J
K−`+1)

(15)

The effective MAC channel gain vector at Receiver
i is denoted as heff,i and it is defined as

heff,i ,

(
hii√

1+h2
K−i+1,iP

J
K−i+1

, 1√
1+h2

K−i+1,iP
J
K−i+1

, . . . ,

1√
1+h2

K−i+1,iP
J
K−i+1

)T
.

The ratio between the power of each effective codeword
in the effective MAC equation (15) and the power
constraint P is defined as power scaling vector beff,i and

beff,i ,

(√
Pi
P ,

√
h2
1iP1+h2

KiP
J
K

P , . . . ,

√
h2
KiPK+h2

1iP
J
1

P

)T
Now, Receiver i applies the compute-and-forward technique
used for a MAC channel in [10]. Following this technique,
Receiver i finds the nearly optimal set of linearly independent
integer-valued coefficient vectors which maximize the
achievable MAC sum-rate for that Receiver. The receiver
constructs K-linearly independent equations using these
integer-valued coefficient vectors and decode each equation
successively. The first equation is to aim to decode the
effective lattice codeword associated with the densest lattice
codebook. Upon decoding this codeword, it is canceled
out from the second equation and so forth. Therefore, the
least achievable equation rate is associated with the K-th
combination equation.



Let us denote the optimal set of integer-valued coefficient
vectors that construct the K combination equations
with a1,a2, . . . ,aK . Also, let us denote the rates at
which the K combination equations are decoded at
Receiver i as Ricomb,1, R

i
comb,2, . . . , R

i
comb,K . The set

of coefficient vectors is computed such that the rate at which
combination equations are decoded is non-increasing, i.e.,
Ricomb,1 ≥ Ricomb,2 ≥ · · · ≥ Ricomb,K . Basically, the effective
codeword with the highest achievable rate is decoded first
and canceled out and then the second highest rate effective
codeword is decoded and so forth. Let us denote the first
combination equation as v1 , a1(`)xeff,`. For instance, the
effective codewords at Receiver i are defined as xeff,1 , xi,
xeff,2 , h1ix1 + hKix

J
K and so forth so it would match

the corresponding gain order in the effective MAC observed
by Receive i. Decoding equation v1 is performed using the
compute-and-forward technique [10], [16] by scaling the
noisy observation and canceling out the public dithers as
β1ỹi −

∑K
`=1 a1(`)d̄eff,` = v1 + zeff,i,1, where

zeff,i,1 ,
K∑
`=1

(β1heff (`)− a1(`))xeff,` + β1z̃i (16)

Let us denote the second moment of the effective noise term
associated with combination equation 1 in (16) as σ2

eff,i,1.
Following Theorem 2 in [16] equation v1 can be decoded
at an achievable rate Ricomb,1 = 1

2 log(
Peff,j
σ2
eff,i,1

), where j

is the index of the effective lattice codeword with densest
lattice sets among participating codewords in combination
equation v1. Similarly, combination equations v2, . . . ,vK are
constructed and decoded. Assume that the mapping between
effective codeword indices and the order at which they get
decoded at Receiver i is determined by a one-to-one per-
mutation function πi(.) : {1, 2, . . . ,K} → {1, 2, . . . ,K}.
Therefore, the achievable combination rates are derived as
Ricomb,` = 1

2 log
(
Peff,πi(`)
σ2
eff,i,`

)
. We already established that the

combination equations are constructed such that the code-
word with the densest lattice set gets decoded first therefore
σ2
eff,1 ≤ σ2

eff,2 ≤ . . . σ2
eff,K . As a result, the lowest achiev-

able rate to decode effective codeword xeff,1 at Receiver i,
i.e., xi is

Ricomb ,
1

2
log

(
Peff,1
σ2
eff,i,K

)
=

1

2
log

(
Pi

σ2
eff,i,K

)
(17)

Similarly, the achievable combination rates are determined
at the other receivers. Since in (4) Ri ≤ Ricomb for i ∈
{1, . . . ,K}, the proof of reliable decoding is completed. Due
to space limitation, Analysis of weak secrecy is provided in
[13].

V. CONCLUSION

We introduced an efficient achievable secure coding frame-
work to transmit confidential messages over an asymmetric
interference channel with arbitrary number of users (K > 2)
provided that the interference level lies in the weak and
moderately weak interference regimes. Our achievable scheme

utilizes a two-layered codebook comprised of nested lattice
codebooks and i.i.d. repetitive codes. We applied a novel
approach of cooperative jamming and superposition coding
to ensure security of the confidential messages without using
external helpers. Also, we utilized the asymmetric compute-
and-forward decoding strategy to handle finite SNR regime.
We showed that following our scheme, users achieve secure
rates which scale linearly with log(SNR) and a sum secure
rate that is within constant gap of sum capacity is attainable.
Furthermore, our cooperative scheme achieves the optimal sum
secure degrees of freedom of 1 for the defined security model.
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