Future Generation Computer Systems 77 (2017) 40-51

Contents lists available at ScienceDirect T >
FiGICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs e

SecureSense: End-to-end secure communication architecture for the @Cmssmk
cloud-connected Internet of Things

Shahid Raza®*, Témas Helgason ¢, Panos Papadimitratos b Thiemo Voigt &€

2 RISE SICS, Isafjordsgatan 22, Stockholm, Sweden
b Networked Systems Security Group, KTH Royal Institute of Technology, Stockholm, Sweden
¢ Department of Information Technology, Uppsala University, Sweden

HIGHLIGHTS

e Extending IoT capabilities from the PSK-based CoAP to RPK- and certificate-based CoAP.
e Bring CoAP and DTLS-based security in Sics™Sense, a cloud platform for the IoT.
e Extensive empirical evaluation of E2E security for the cloud-connected IoT.

ARTICLE INFO ABSTRACT

Article history: Constrained Application Protocol (CoAP) has become the de-facto web standard for the IoT. Unlike
Received 15 October 2015 traditional wireless sensor networks, Internet-connected smart thing deployments require security. COAP
Received in revised form 6 June 2017 mandates the use of the Datagram TLS (DTLS) protocol as the underlying secure communication protocol.

Accepted 13 June 2017

Available online 28 June 2017 In this paper we implement DTLS-protected secure CoAP for both resource-constrained IoT devices and a

cloud backend and evaluate all three security modes (pre-shared key, raw-public key, and certificate-
based) of CoAP in a real cloud-connected IoT setup. We extend Sics™Sense- a cloud platform for the

IS(:)C/'.\;\;?:;S‘ [oT- with secure CoAP capabilities, and compliment a DTLS implementation for resource-constrained
Internet of Things IoT devices with raw-public key and certificate-based asymmetric cryptography. To the best of our
10T knowledge, this is the first effort toward providing end-to-end secure communication between resource-
CoAP constrained smart things and cloud back-ends which supports all three security modes of CoAP both on
DTLS the client side and the server side. SecureSense- our End-to-End (E2E) secure communication architecture
Cloud for the IoT- consists of all standard-based protocols, and implementation of these protocols are open
source and BSD-licensed. The SecureSense evaluation benchmarks and open source and open license
implementation make it possible for future IoT product and service providers to account for security
overhead while using all standardized protocols and while ensuring interoperability among different
vendors. The core contributions of this paper are: (i) a complete implementation for CoAP security modes
for E2E IoT security, (ii) IoT security and communication protocols for a cloud platform for the 10T, and (iii)
detailed experimental evaluation and benchmarking of E2E security between a network of smart things

and a cloud platform.
© 2017 Elsevier B.V. All rights reserved.
1. Introduction with the Internet. This network of smart things, called 6LoOWPAN

)) o network, and its interconnection with Internet hosts (standard

Internet Protocol v6 (IPv6) with potentially unlimited address computers, smartphones, computing clouds, etc.) forms the Inter-

space and its header compression using the 6LOWPAN (IPv6 over pet of Things (10T). Most smart things are resource-constrained and

Low—.g;)wer Wireless PerzonalhArga }\Iit.worlgs) standard mall;ec;t cannot run heavy-weight applications and therefore connected

possible to connect everyday physical things, having a tiny embed- with cloud backends that host sophisticated intelligent services
ded computer and limited storage and communication capabilities,

built using the data produced by smart things. IoT devices are

S projected to be in billions with heterogeneous capabilities. To en-
* Corresponding author. sure interoperability among IoT devices, different IoT protocols are
E-mail addresses: shahid@sics.se (S. Raza), tomash@sics.se (T. Helgason), . R ¢ ' N
papadim@kth.se (P. Papadimitratos), thiemo@sics.se (T. Voigt). being standardized. In particular, Constrained Application Protocol
URL: http://www.ShahidRaza.info (S. Raza). (CoAP), a lightweight variant of HTTP, is standardized to provide

http://dx.doi.org/10.1016/j.future.2017.06.008
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.06.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.06.008&domain=pdf
mailto:shahid@sics.se
mailto:tomash@sics.se
mailto:papadim@kth.se
mailto:thiemo@sics.se
http://www.ShahidRaza.info
http://dx.doi.org/10.1016/j.future.2017.06.008

S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51 41

cloud platform

Conventional IP network

|

|

! Californium

|

| CoAP / DTLS The Internet

|

|

'] [
| &

| / L
|

! Sics""Sense

|

|

|

|

|| I Border
| Router
i

h

|
|

Fig. 1. A SecureSense end-to-end IoT setup securely interconnecting 6LoOWPAN networks of resource-constrained IoT nodes (OpenMotes) with a cloud backend (Sics™Sense),

using the CoAP and DTLS protocols.

web capabilities in the IoT. CoAP has become the de-facto web
standard for the IoT.

Real-world Internet-connected IoT deployments require secu-
rity. CoAP mandates the use of the Datagram Transport Layer
Security (DTLS) as the underlying secure communication protocol.
Standard-based IoT and security protocols can ensure strong se-
curity and interoperability between End-to-End (E2E)-connected
applications involving resource-constrained smart things and
cloud-backend. For example, a smart grid equipped with cloud
computing and intelligent data analytics services can balance the
demand and supply of electricity to smart homes if complemented
with frequent electricity usage data from smart homes. In such
as a setup, smart homes are connected to a grid through a smart
meter. It is likely that smart meters are not fully trusted and
sensitive private household data must be protected E2E between
smart homes devices and a smart grid; we provide such secure
communication paradigms in this paper.

We present SecureSense, a communication architecture fully
based on standardized protocols, which ensures E2E secure com-
munication between resource-constrained IoT devices and stan-
dard Internet hosts. We do not claim that we are the only one
to provide secure communication between IoT devices and com-
puting clouds (Section 2 discusses related proposals in detail.);
however, we are the first to provide the DTLS-protected secure
communication architecture and its implementation and perfor-
mance evaluation for the cloud-connected IoT with all three secu-
rity modes of CoAP: Pre-Shared Key (PSK)-based, Raw-Public Key
(RPK)-based, and X.509 certificate-based. Fig. 1 shows a Secure-
Sense setup.

On the resource-constrained network side, we extend Lithe [1]-
our lightweight PSK-based DTLS and its integration with CoAP for
the Contiki OS- with RPK and certificate-based public key crypto
that uses Elliptic Curve Cryptography (ECC), which can be used
both as the DTLS client and server. On the Cloud-side we extend
Sics™Sense, our cloud platform for the IoT [2]. Prior to this paper,
Sics™Sense though supports HTTP and TLS but does not support
CoAP and DTLS. We therefore compliment Sics™Sense with CoAP
and DTLS to make it ready for the IoT protocols.

With these extended capabilities, the major part of this paper
presents performance evaluation of SecureSense. In our evalua-
tion, among others, we evaluate the time (that in turn translates
to energy) overhead of different CoAP security modes, the time
and energy to compute individual DTLS messages, the average
DTLS handshake completion time for different security modes,
the roundtrip time between a 6LoWPAN node and Sics™Sense for
multiple hops and multiple data sizes, and the ROM and RAM over-
head in a 6LoOWPAN node. All SecureSense protocols are standard-
based and our implementations of all these protocols are open
source and open license, ensuring interoperability among different
vendors and adoption by different IoT product and service provider
(especially IoT startups) without delving into expensive licensing
issues and by avoiding implementation costs.

Following are the main contributions of this paper,

e We extend the capabilities of 6LoOWPAN nodes from PSK-
based secure CoAP to RPK-based and certificate-based CoAP,
which use both our open source and BSD-licensed ECC im-
plementation and the ECC library provided by a hardware
crypto.

e We provide DTLS-based security for Sics™Sense and inte-
grate it with a CoAP implementation.

e With these novel features, the major part of our contribution
is the extensive evaluation of all security modes of CoAP for
the cloud-connected IoT.

The rest of the paper is organized as follows. In Section 2,
related work is summarized and a brief overview is given of the
technologies and concepts used in this paper. In Section 3, we
introduce our architecture for Sics"Sense and the cloud connected
[oT devices. Our implementation is briefly outlined in Section 4.
In Section 5, we describe our experimental setup and discuss the
evaluation results. Finally, Section 6 concludes this paper.

2. Background and related work
2.1. Cloud connected IoT

Cloud computing allows sharing the resources of powerful
servers in data centers with other devices like smart phones and
personal computers. Using the same technology for the IoT allows
resource-constrained sensor devices to send and store their mea-
surements in a central location accessible by multiple other de-
vices. Cloud computing also makes it possible to perform advance
analytics and build sophisticated services using the sensor data
from the IoT devices. Multiple cloud platform design guidelines,
frameworks and implementations have been put forward for the
[oT [3-5]. These solutions are either closed sourced or discussion
connectively issues and not addressing security.

Leshan [6] is an OMA Lightweight M2M (LWM2M) open source
implementation in Java that is currently under development. It
provides libraries to help others develop their own lightweight
M2M server or client. Sics™Sense [2] is a cloud platform that can
easily store data from external sources and allows external inter-
action. Sics™Sense centers around the collection and processing of
data streams. All streams are a part of a resource that can keep
track of multiple streams. Each resource can have defined multiple
parsers that are used to split incoming data to correct streams. A
stable open-source version is available with all the core functional-
ities to store data generated by [oT devices. Sics™Sense was missing
support for lightweight and secure communications solution for
IoT devices. Therefore, we extend Sics™Sense and integrate it with
SecureSense.

42 S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51

Client Server
| ClientHello ———Flight 1.
) — HelloVerifyRequest(C)
| ClientHello(C) :::E:Z
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
) I ServerHelloDone
Certificate* a—Flehts

ClientKeyExchange

CertificateVerify*

ChangeCipherSpec

Finished

[Flight 5— |

ChangeCipherSpec

Finished

| a—Flight6— |

Fig. 2. DTLS handshake message exchange (* only used for some cipher suites).

2.2. CoAP and DTLS

The Internet Engineering Task Force (IETF) recently standard-
ized the Constrained Application Protocol (CoAP) [7], a lightweight
variant of HTTP, for the IoT. CoAP runs over UDP and was primarily
designed to be used with constrained devices. CoAP makes use of
the REST architecture that is common with HTTP while providing
low header overhead and parsing complexity. The CoAP standard
mandates DTLS for providing communication security between
two CoAP end-points. CoAP defines four different security modes:
NoSec when DTLS is disabled, Pre-Shared Key (PSK), Raw Public
Key (RPK), and Certificate.

Datagram Transport Layer Security (DTLS) [8] is a variant of
Transport Layer Security (TLS) designed to work over connection-
less UDP instead of TCP. DTLS supports automatic key management
and provides data encryption, integrity protection and authentica-
tion. It also supports protection against replay and Denial of Service
(DoS) attacks. DTLS uses the Handshake protocol to establish a
secure session, which is a chatty protocol and exchanges multiple
messages during the handshake process. DTLS uses the Record
Protocol for cryptographically protecting all messages once the
handshake is complete. In the DTLS Handshake protocol, each
transmission between a client and a server is defined as a flight
shown in Fig. 2. Different cipher suites can be used in the hand-
shake to establish the secure session, and the actual handshake
messages therefore vary among cipher suites. In our implemen-
tation we use the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and
TLS_PSK_WITH_AES_128_CCM_8 cipher suites, recommended by
the CoAP standard.

To cope with the Maximum Transmission Unit (MTU) size lim-
itations in IEEE 802.15.4 based networks, the 6LoOWPAN header
compression mechanisms are standardized [9]. We have already
extended the 6LoOWPAN header compression mechanisms to the
DTLS protocol in Lithe [1]. In Lithe, we have evaluated that the
compressed DTLS has lower energy consumption and response
time compared to standard uncompressed DTLS.

Public-key cryptography has been implemented and efficiently
used with dedicated hardware modules for constrained devices
before [10]. An extension to this work adds end-to-end security
with two-way authentication implementation but using dedicated
hardware module for RSA and Elliptic Curve Cryptography (ECC)
and not using the IoT protocols such as CoAP [11]. Due to the
smaller key sizes, ECC cryptography is a more suitable for IoT

devices than RSA [12]. An ECC cryptography library for Contiki
that is both open source and BSD licensed was recently imple-
mented [13]. It has been shown that implicit certificates decrease
the transmission and verification overheads of traditional public-
key certificates [14], although they will not replace traditional
certificates. Another way to decrease the handshake transmission
is to use the proposed Cached Information Extension for TLS [15],
that allows client to cache server information and therefore that
information is not needed in future handshakes. Moreover, a com-
prehensive session resumption, denial-of-service protection and
retransmission mechanisms for DTLS for constrained networks
have been introduced in recent paper [16].

Another way to cope with the resource constraint of a sensor
node is to delegate the resource intensive DTLS connection estab-
lishment to another trusted party. Several delegation approaches
have been proposed [17,18], but most of them make use of the
border router for delegation. This means that the border router
needs to be fully trusted and protected against attacks. Different
approach is presented in recent paper by using delegation server
instead [19]. However, there the problem is still that the server
needs to be fully trusted, and if compromised, all of the sensor
nodes in the delegated network are also compromised. Using dele-
gation also means that the E2E security is broken at the delegation
entity. When both storage and communication security is required
in the IoT, we have presented a solution to reduced the number
of cryptographic by combining the storage and communication
security operations [20].

Recently we have investigated different attacks against DTLS
and improved DTLS resistance against denial of service and en-
hanced the key provisioning scalability of the DTLS handshake [21].
We have also provided a DTLS-based solution that only uses sym-
metric cryptography but is scalable to billions of device [22]; how-
ever, it requires a trusted third party. All these previous approaches
for efficient DTLS are complementary to our work. The focus of
this paper is to implement and evaluate DTLS and CoAP between a
6LoWPAN network and a cloud platform enabling E2E security and
providing clear performance benchmarks for security while using
all standardized protocols.

2.3. IoT hardware

IoT devices are small sensor nodes that are mostly resource-
constrained compared with other devices connected to the Inter-
net in terms of energy, storage, and processing resources. These
devices should be able to run for a long time on a battery power
alone, while at the same time communicating to other devices
on the Internet. Terminology for Constrained-Node Networks [23]
defines three different classes of constrained devices and provide
approximate device capabilities. The class 1 devices covers sensor
nodes that cannot communicate with typical Internet host using
the available standardized Internet security protocols such as DTLS
and IPsec. The class 2 covers devices that have just enough re-
sources to securely communicate with Internet hosts using for
example the CoAP and DTLS protocols but in the CoAP PSK mode.
IoT devices in class 3, with at least 32K of RAM and a couple of
hundreds kilobytes of ROM, are able to support DTLS and IPsec
with certificates, while still leaving enough space for applications.
SecureSense uses OpenMote [24] sensor nodes having capabilities
in between the Class 2 and Class 3 devices. OpenMote has enough
resources to run standard Internet security protocols while still
having the benefit of energy efficiency.

3. SecureSense: Standard-based E2E secure communication in
the cloud-connected IoT

It is possible to connect multiple sensor nodes to a cloud plat-
form on the conventional Internet in a number of ways. One way is

S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51 43

to separate the two networks using two different protocol stacks.
In this case, it is not possible to communicate directly from one net-
work to the other, without translating all the messages at special
computers (proxies) at the border of the two networks. Such an ar-
chitecture requires trusting the intermediaries (gateways, border
routers, etc.) which breaking E2E security, effects throughput, and
makes the entire setup complex and hard to manage.

In our proposed architecture we chose to use the full IPv6
network stack and standard Internet protocols on both of the net-
works. Because of the resource constrained devices and low power
networks used for the IoT, adaptations have been proposed to the
IPv6 standard, called 6LoWPAN [9], to make it more lightweight.
When using 6LOWPAN there is still translation needed at the net-
work border, but it is extremely lightweight and does not break E2E
security. A 6LoOWPAN Border Router (6BR) is used to connect the
conventional IPv6 network to the 6LoWPAN network. In addition
to processing 6LoOWPAN header compression and fragmentation,
6BR also performs network interface translations, for example,
from IEEE 802.15.4 to Ethernet.

In Fig. 1 we present how in our solution the Sics™Sense cloud
platform communicates end-to-end with a sensor nodes in the
6LoWPAN network. Packet is sent from the cloud service and the
border router performs compression and fragmentation if nec-
essary of the IP and UDP headers before entering the 6LoOWPAN
network. Here, it is also possible to perform compression of other
protocols; we have already specified the 6LoWPAN compression
of DTLS in Lithe [1]. The packet then goes from the 6BR to the
sensor node with the particular destination address, through one
or more hops. A response goes the same way back and the IP and
other headers are then decompressed at the border router. The
IEEE 802.15.4 is used at the Physical and Mac layer in a 6LoWPAN
network, while on the conventional internet Ethernet or any other
physical layer standard can be used.

In general, when selecting a transport layer protocol, there are
two protocols to select form, TCP and UDP. In the low-power and
lossy 6LoWPAN networks, more packet loss can be expected than
in conventional networks and TCP does not function well in such
environments, because of its congestion control and connection-
oriented nature. Therefore UDP is mostly used in 6LoWPAN net-
work. UDP provides unreliable packet transmission but additional
reliability is instead added in the application layer using timers and
retransmissions.

In SecureSense we use CoAP as an application layer protocol to
enable web capabilities in the IoT. We can use the HTTP protocol,
but it is both too heavyweight for IoT devices and is designed to
be used with TCP. CoAP uses UDP as a transport protocol but still
provides many of the same functionalities as HTTP provides.

The protocols mentioned before provide no security by default
and therefore additional mechanisms are needed to secure the data
transmission in SecureSense. One way to secure data communi-
cations is to do it on the link layer using IEEE 802.15.4 security
within the 6LoOWPAN networks. A different security solution is then
needed when data leaves the 6LoWPAN network to the Internet.
Also, IEEE 802.15.4 only provides security over one hop at a time
through a 6LoWPAN network. We instead want to provide secure
end-to-end transmission of data between a cloud platform and a
sensor node. Therefore, the next possible solution is to secure all
the IP packets sent to and from a cloud platform using IPsec on the
IP layer. This solution is often used for Virtual Private Networks
(VPNs) to send IP packets between virtual networks securely. This
solution can though cause problems if changes are made to the IP
layer of the OS as the IPsec implementation also needs to adapt
to these changes. Another solution is to implement a custom se-
curity mechanism in the CoAP protocol itself on the application
layer. HTTP achieves this by using a separate standardized pro-
tocol between the application and transport layers to secure the

HTTP traffic. This solution is both easily deployable and upgradable
because the security protocol can be independent of how the
operating system implements the transport and network layer
protocols. The protocol is responsible for setting up all security
parameters needed between two parties using a handshake, before
the application protocol can start communication with the other
party. TLS is the protocol used for HTTP, but like HTTP it uses TCP.
Datagram TLS is an alternative that is based on TLS but designed
to be used with UDP instead of TCP. SecureSense therefore uses
DTLS to secure all CoAP application data between a sensor node
and a cloud platform. Here, there is also a low learning curve in
understanding how to use secure CoAP with DTLS, because it is
similar to securing HTTP with TLS, that is widely used today.

The protocol stack chosen for the SecureSense is in the end
similar to what is normally used on the conventional Internet, with
the main difference of using more lightweight protocols that also
handle the packet loss in the lossy networks better. In Fig. 3, we see
how data from the cloud platform is sent E2E through the network
using all the protocols.

The border router only needs to inspect packets up to the net-
work layer. It does not need to look at anything in the higher layers,
unless it also needs to act as a firewall or these higher layers should
also be compressed using 6LOWPAN compression techniques. We
also see how the switch from Ethernet on the physical and link
layer to the low power 2.4 GHz IEEE 802.15.4 standard is done
at the border router. Translations between different physical and
link layer protocols on the Internet is indeed done all the time
in conventional routers and computers. Finally, we see how the
additional 6LoOWPAN layer is added before the IP layer to allow it
to be compressed when transmission over the 6LoWPAN network.
When a packet leaves a 6LoWPAN network to the Internet, all
headers are restored to a normal full uncompressed headers.

After having the overall description of Sics™Sense, we delve
deeper and explain how the two extremes ends, resource-
constrained sensor nodes and extremely powerful cloud platforms,
are developed.

3.1. Cloud side

One the cloud side of SecureSense, we use Sics™Sense, a cloud
platform for the IoT, that we have previously developed. We en-
hance and integrate existing CoAP and a DTLS libraries, developed
for standard computers, into Sics™Sense. In Fig. 4, we see how
Sics™Sense processes packets it receives from the network and
where we integrate the Californium [25] and Scandium' libraries
into SecureSense. It also shows how all secure CoAP packets go
through the DTLS protocol, while unsecured CoAP can still be
used without DTLS. The platform does not accept DTLS packets
containing CoAP application data until it is connected to the other
peer by completing the DTLS handshake. Sics™Sense also support
HTTP and TLS. How TLS is handled for HTTP is very similar to DTLS,
and therefore, it is not shown in Fig. 4. Because CoAP has similar
capabilities to HTTP, many Sics™Sense functions already available
for HTTP can also be used with CoAP.

Sics™Sense also has the possibility to poll data on a regular in-
terval from a specific URL instead of relying on data being pushed to
the platform. In Fig. 5 we see how Sics™Sense prepares the secure
CoAP client when a new polling URL is assigned to a resource. This
is done to avoid the need to make a new handshake with the host
on every poll and to make sure to close DTLS connection correctly
when it is no longer being used. A new secure CoAP connection
is only opened if new handshake cannot be avoided, otherwise the
old already established session is resumed. SecureSense also makes
sure that old secure CoAP connections are closed properly. When a

1 https://github.com/eclipse/californium.scandium

https://github.com/eclipse/californium.scandium

44 S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51
Layers:
6LoWPAN header = ——--—-—-----
CoAP compression CoAP o
Application
DTLS DTLS
—
ubP | IPv6 UDP Transport
) A R
IPv6 IPv6 : 6LoOWPAN 6LOWPAN IPv6 | Network
|EEE 802.3 IEEE 802.3 : IEEE 802.15.4 IEEE 802.15.4 | Link & MAC
) St R S—————
Ethernet lemeMeLl pihernet | 1 | 1EEE802.15.4 EOWPAN e 002 15.4 | Physical
| network L~ "7 | 7T

SICSth Sense Border Router

Openmote (loT)

Fig. 3. The protocol stack used between the Sics™Sense cloud platform and the OpenMote nodes on the 6LoWPAN network in SecureSense.

Send error
message

Is Californium
server resource?,

Handle TLS }—D{Hand\ﬂ HT \Pl

Handle
sics™sense
API request

Is old URL
avalible?

New or changed
resource URL

CoAPs scheme?

Drop packet
Yes

Handle
Decrypt handshake
packet using
Scandium

Is peer
connected?

L T e i

Is old URL Is new URL

CoAPs scheme?

No

Close old host

DTLS connection

Is new URL Is connected

Isit the

CoAPs scheme? secure client?

same host?

A

DTLS connection |

Close old host
DTLS connection

Open new

Fig. 5. Flow chart showing how Sics™Sense opens new DTLS connection and/or reuses an old DTLS session when resource URL is changed.

poll timer expires, the correct method is selected based on the URL
scheme for that resource and the response data is then returned to
the Sics™Sense parser that imports the data to the correct stream
for the resource.

3.2. 6LoWPAN side

On the resource-constrained IoT side, a 6LoWPAN networks is
formed and a sensor node, running IPv6, CoAP, DTLS, IEEE 802.15.4,
etc., is connecting to SecureSense. On the 6LoOWPAN side, we use
Contiki, an operating system for the IoT. This sensor node can
either be a CoAP client that starts the communication with the
Sics™Sense cloud platform, or a CoAP server that responds to
requests form the SicsSense cloud platform. Lightweight CoAP
with DTLS have already been implemented for Contiki [1]. Our
solution enhance the existing libraries to support RPK and full
certificate-based cryptography. We also enhance and integrate
the existing libraries to support our software-based ECC [13] and
provide drivers to support hardware crypto of OpenMote [24]. In
Fig. 6 we see how the DTLS is integrated into the procedure of
sending CoAP messages in Contiki. We therefore are storing state

about whether CoAP requests are secure or not, and then respond
to them correctly depending on that state. This is identified by the
incoming or outgoing ports used by the CoAP request. Therefore
the security state of CoAP is identified by the port number used.

Though developing security protocols for standard computers
is also hard, it is very challenging to provide these protocols for
constrained devices. Also, the performance benchmarks for energy,
throughput, processing resources, ROM/RAM, etc., are more impor-
tant for battery-powered IoT nodes than conventional computers.
Therefore, we provide implementation details for the 6LoWPAN
side; also, most of the evaluations are also targeted for 6LoWPAN
networks.

4. Implementation

In this section we present the SecureSense implementation and
highlight our contributions.

4.1. Platforms and software

Contiki [26] is an open source operating system used for net-
worked embedded devices with focus on low-power IoT devices.

S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51 45

Secure
port?

CoAP send
request

Peer
exists?

Connected
peer ?

No

[Send using UDPJ [Connect to peer] [Send using DTLS

Fig. 6. Flow chart showing how CoAP in Contiki sends data with and without security.

Fig. 7. OpenMote connected to a Xbee USB dongle.

Contiki has a small memory footprint because it uses event-driven
kernel with multiple threading models on top of it. It has been
deployed on many platforms and therefore also used with several
different CPUs.

OpenMote, Fig. 7, is a new wireless node from OpenMote Tech-
nologies [24] that uses the CC2538 system on chip from Texas
Instruments [27]. OpenMote was selected as it provides good fea-
tures for development and testing. OpenMote has four LEDs, two
buttons and an antenna connector for an external antenna. The
CC2538 chip was chosen as it already has a good support available
in Contiki. The CC2538 is a chip that has a powerful ARM Cortex-
M3-based microcontroller that has a rated clock speed up to 32
MHz. It is combined with 32 KB on-chip RAM and 512 KB on-chip
flash storage. Finally, it has an IEEE 802.15.4 radio that can be used
for 6LOWPAN networks. The CC2538 chip can easily handle the
Contiki operating system with enough resources left for security
and other applications to be implemented. The chip has also op-
tion for powerful hardware accelerators for the following security
cryptographic systems and standards: AES-128/256, SHA256, and
ECC-128/256. This allows for both better performance and power
savings, by freeing authentication and encryption tasks from the
CPU.

tinyDTLS [28] is a library that provides simple and lightweight
implementation of DTLS. It is targeted at simple embedded devices
like wireless sensor nodes. We choose lightweight tinyDTLS for
SecureSense rather than larger, more well-known libraries like
OpenSSL.

Erbium (Er) is a low-power REST Engine developed for Con-
tiki [29]. The engine is included in the Contiki operating system and
has an embedded CoAP implementation based on the latest RFC[7].
DTLS has already been integrated into Erbium before using an older
version of both tinyDTLS and Erbium [1]. Our solution upgrades
this integration to the latest version of both tinyDTLS and Erbium,
and adds additional support for RPK and certificate-based crypto.

Californium [25] is a Java based CoAP framework that is targeted
at back-end services with a scalable architecture. It provides an
API for RESTful Web services that support most CoAP features.
The Californium library is actually divided into five sub-libraries
and the core library only provides the CoAP function. Scandium
is one of the libraries that implements DTLS 1.2 to secure the
CoAP application data in Californium. It can be used with pre-
shared keys, raw public keys or certificates. SecureSense uses this

framework to add both CoAP and DTLS support to the SicstSense
cloud platform.

4.2. Integrating CoAP and DTLS in Sicst"Sense

SicstSense already has a powerful HTTP API to be able both
to push and pull data stored in the cloud. To be useful for the
[IoT the new CoAP protocol has been integrated to the platform
using the Californium library. Because Sics™Sense already has a
HTTP implementation, it was used as a base for the CoAP addition.
By using the Californium library a CoAP server was added to the
Sics™Sense cloud platform. To make the CoAP server provide the
same functionality as the HTTP server, we implemented five new
CoAP resource types for Users, Resources, Resource data, Streams
and Stream data. The new SecureSense CoAP APIs allow users to
create, update and pull data from the Sics™Sense cloud platform,
in a similar way as existing HTTP APIs are used.

Sics™Sense is also able to pull data from specific HTTP addresses
at a regular interval. Therefore a CoAP client support was also
added to the cloud platform using Californium. The Californium
CoAP client was interfaced with the Sics™Sense poller. When a
timer expiries to indicate that data should be pulled, the protocol
scheme of the URI is checked, and then the correct function is
selected based on the URL If it is a CoAP URI, a new CoAP client
is started (unless it has already been started), and the request is
sent. The client then waits for the response of the request. This is
similar to what had already been done to select between HTTP and
HTTPs, but now two more options with CoAP and CoAPs have been
added.

Sics™Sense can easily be used by IoT devices without security.
To make it possible to transfer data also securely from devices to
the cloud, the Scandium library was used to add DTLS support
to Californium. A new secure endpoint for CoAP was created to
provide a way to use pre-shared keys and public/private keys using
Java key stores containing certificates. The keys and certificates
are loaded from these key stores using specific format and then
provided to the client and server instances. In addition to configure
these security parameters in SecureSense, it is also possible to
configure things like retransmission count and timeout, that is
necessary to configure for different IoT environments. One of the
differences in our integration of CoAP compared with HTTP, is that
when using the secure client, the CoAP’s state is stored between
each data polling, instead of creating new state for each pool.
Therefore, there is no need for performing the DTLS handshake on
every pool which saves resources accordingly.

4.3. Complementing tinyDTLS

The default ECC cryptographic library used in tinyDTLS is not
open licensed, we therefore implement a BSD licensed ECC li-
brary for the Contiki [13] that only uses non-patented ECC curved
specified in RFC6090. We adapt the functions used by the DTLS
protocol for this new library. When generating or verifying sig-
nature, tinyDTLS already calculates the SHA256 of the data to be

46 S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51

»

MRS

Sics"Sense
cloud platfrom

Fig. 8. The experimental setup consisting of up to four OpenMotes that communicate through single or multiple hops to a border router that is in turn connected to a

standard computer running the Sics™Sense cloud platform.

signed or verified, before calling any ECC function. The new ECC
library is on the other hand expecting raw data to its functions
and it then calculates the SHA1 hash of the data in this functions.
Because of this and the fact that the ECC cipher suite uses SHA256,
new functions were created that skip these SHA1 calculations and
instead takes in a SHA256 value of a data directly as a parameter.
Therefore, SHA hash calculations in the new ECC library in tinyDTLS
are not needed. Having all the SHA hash calculations in the same
place makes it also simpler to upgrade in the future.

We also add support for the CoAP RPK-based mode and the
X.509-based certificates mode. We link these additions with our
new ECC library and add support for SHA256 hash functions. We
update tinyDTLS to support the new certificate and certificate ver-
ify messages. Furthermore, we change the DTLS hello messages, for
both client and server, to have the correct extension that indicates
the use of X.509 certificates instead of RPKs, as explained in RFC
7250 [30]. Our implementation can use both RPKs and certificates
at the same time, and the actual mode is dynamically selected
based on what both parties support. Last but not least, we update
the certificate request message and add the ASN.1 formatted ID of
the CA expected from the client.

4.4. Hardware crypto acceleration

We port the ECC cryptography drivers to Contiki for the CC2538
chip from Texas Instruments and integrate them with our ECC
library in a way that makes it simple to select between the hard-
ware and software implementation. When using the hardware
acceleration, mathematical functions of the ECC library are re-
placed with hardware functions when compiling for the CC2538
chip. There are hardware accelerated functions for multiplication,
comparison, modular and inverse modular for big integers. There
are also hardware accelerated functions for addition and scalar
multiplication of ECC points. A driver for AES and SHA256 hash
hardware acceleration for the CC2538 chip has already been ported
to Contiki and therefore it was also possible to implement hard-
ware support in tinyDTLS for these cryptographic standards.

5. Evaluation

This paper follows the empirical methodology that begins
with a concrete problem and is used to evaluate the impact of
one particular variable of a phenomenon by keeping the other
variables controlled. The basic problem we tackle is: can we
use the government-grade certificate-based security in resource-
constrained battery-powered IoT devices and what is the overhead
of security when using all standardized protocols? This section
answers this question.

We evaluate different security modes in CoAP, when using DTLS
between a node in 6LoWPAN network and a cloud platform. Our
experimental setup is shown in Fig. 8. It consists of four OpenMotes
connected to the 6LoOWPAN Border Router (6BR) (also an Open-
Mote) and forms the 6LoOWPAN network, and a standard computer
that hosts the SicsSense cloud platform and is connected to the

5
_ 0o NullRDC
0 o 3.
QE) 4| | BE ContikiMAC 8 35
ﬁ 3 28 7
2.4
& %
£ o
E 7 7
»-E ! 0.3 ﬁ/ ﬁ/
0 0.2 - / /
PSK RPK Certificate

Security mode

Fig. 9. Average DTLS handshake completion time between an OpenMote, running

as the DTLS client, and the Sics™Sense cloud platform, running as the DTLS server,
for all the three modes of secure CoAP over single hop and with two different MAC
protocols.

6LoWPAN border router through the serial port. OpenMotes are
wirelessly connected to each other and each of them runs the IoT
stack shown in Fig. 3. To ensure that the messages are actually
communicated through multiple nodes we implement a static
routing path from leave nodes to the 6BR. We evaluate SecureSense
with up to four hops in 6LoWPAN networks.

5.1. Handshake protocol in SecureSense — time overhead

5.1.1. DTLS handshake completion time

The most resource hungry operation in DTLS is the handshake
process; we therefore measure the time each handshake process
takes. The handshake completion time is measured on an Open-
Mote, using hardware accelerated cryptography for AES, ECC and
SHA256, when communicating to a Sics™Sense cloud platform
through the 6BR. Two different radio duty cycling layers are used,
ContikiMAC and NullMAC, The latter never turns off the radio.

Fig. 9 shows that ContikiMAC actually takes less time than
NullMAC for the RPK and certificate-based CoAP security modes.
This is counterintuitive as NullMAC is expected to send a packet
immediately while ContikiMAC may have to wait for its peer to
wake up before it can transmit. Also, packets may get lost in low-
power and lossy 6LoWPAN networks. ContikiMAC has a built-in
retransmission mechanism that may lead to faster retransmission
of lost packets.

In this experiment, most of the time is spent on the resource-
constrained OpenMote because the cloud platform is running on a
more powerful hardware. The cloud can therefore process packets
and run cryptographic functions much faster than OpenMote. In
Fig. 9 we see that both the RPK and Certificate-based modes take
much longer time than PSK; we show the cause of this behavior in
the next section.

5.1.2. Individual handshake message processing time
Fig. 10 shows the time DTLS server take to process incoming
messages and also the time it takes to prepare new outgoing

S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51 47

1,000

800

600

400

Time [ms]

200

Fig. 10. Time needed to prepare and process individual handshake messages using
the CoAP certificate-based security mode, when the DTLS server is running in a
sensor node.

O Process Prepare ‘ 27
72 17
Y ’/ 1.4
: /
8 1
=1 0.8 %
04 04 ﬂ% %
%
o A7
X
&23}\0 0\3@% OQQV&o 0’5'@/ (§Q§
e& Q& ?& 4@* (}&‘Q Q}_‘_& %-e 4?5 Oé,
N2 &
04@*{& e& %& {@‘ &QQS,-@& i
o & & &
& ¢

Fig. 11. Time needed to prepare and process individual handshake messages using
the CoAP certificate-based security mode but without the ECC functions, when the
DTLS server is running in a sensor node.

messages during the handshake in security mode 3 that uses
X.509 certificates. This also includes the time it takes to process
the record header and decrypt packets if needed, using the AES
hardware crypto. These time measurements do not include the
time it actually takes to send or receive the messages. For these
measurements the certificate-based security mode is used, but
the only major difference in RPK is that the ECC signature in the
Certificate messages is not verified there. The results show that
the ECC functions and the calculation of the Master Secret take
majority of the overall time. In PSK security mode, no ECC functions
are needed and also not all handshake messages are needed, hence
the overall time is much shorter. These results also show that
the additional and large-sized handshake messages for certificate-
based mode do not primarily contribute to the longer handshake
time when compared with the PSK mode.

In Fig. 10, ECC operations take most of the time and the time
other messages take are suppressed and not clearly visible. There-
fore, in Fig. 11 we show in more detail how much time it takes to
process or prepare messages when the time of the ECC functions is
skipped. Fig. 11 shows that most of the messages take a very short
time, between 0.1 and 2.7 ms. The reason the Finished message
takes longer time is because the handshake final hash calculations
are required and the Finished messaged is sent encrypted using
the new master secret key. We also see that the Server Certificate
and Server Key Exchange messages take a longer time. That is
because they include more data and therefore it takes longer time
to prepare this data than for the other messages.

1,000
’ O Process or Prepare EECC cryptography
800 695 697
£ 600
<]
E 400
~
200
ol09 01 1 02
¥ Qe?\ o© ® &
N S
ST G
O & & 7
\\Q (OQ;é & >
Dad %@é

Fig. 12. Time needed to prepare and process individual handshake messages using
the CoAP certificate-based security mode, when the DTLS client is running in a
sensor node.

2.5
O Process Prepare 5
2
— 1.6 7 1.6
2 15
[}
E 1)09 -
[_4
0.5
o1 0223 02 1 02 % 0.2
JAL A Nm LAV e |
X O o0 & £ & e e & (ORI
FEONFFEESFF LS E L
& &, S &«2» & &QQS 0\300 & cquz ~&%Q e‘(&\&%
SEREFE TS E o S
O\é‘&-e& ST &Q’& & & fobc&
SO S EsF F & 8
\\0 %QQ,*Z&@@C/QOC/Q
Q C N
o O L
&g

Fig. 13. Time needed to prepare and process individual handshake messages using
the CoAP certificate-based security mode but without the ECC functions, when the
DTLS client is running in a sensor node.

Figs. 12 and 13 also show the time individual handshake mes-
sages take when the DTLS client is running in a sensor node, with
and without ECC operations, respectively. The results are very
similar to the server results other than that the ECC functions are
more spread among messages.

In the next section we investigate which ECC functions take the
longest time and compare the impact of the hardware acceleration
on the ECC functions.

5.1.3. Impact of hardware and software crypto on time

The time difference between using the software implementa-
tion of the ECC functions is compared to using the hardware accel-
erated implementation. Fig. 14 shows that the software implemen-
tation takes much longer time than using hardware acceleration or
up to 18 times longer. Here only the client is shown as the server
gives similar results. As these ECC functions take majority of the
overall handshake time, we see how important it is to have them
hardware accelerated. The ECC function that takes the longest
time is the one that verifies an ECC signature. The function that
calculates the master secret from its private key and the public
keys of both parties takes the second longest time. The two other
functions take similar time: the one that generates a public and
private key pair and the one that creates a signature.

5.2. Handshake protocol in SecureSense — Energy Overhead

In the next experiments, we calculate the energy consumption
of each DTLS handshake flight for all CoAP security modes, for both

48 S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51

15
BWZS 13.06 ’DDHardware B2 Software ‘
= 10 7 ;/
jol
7]
o 65’3
g s 7 7
A A 057// 0347 035
3 o
& S & &0 S
LS & & & & & e
{& & < & S° o ‘(3"& Q?@\ & ﬁ&&*
ISP 47 & odlivod N .5
N 4 K ® PR &
LH FTEH G TS (e
,07}0) @é & 13 C/C/ Vé\é’% & ée"”
¢S K& © O§ & C
3 < &

Fig. 14. Comparison of software and hardware ECC functions when handling
handshake messages on the DTLS client side running on OpenMote.

Table 1

Power values for the CC2538 chip at 3 V.
Mode Current Power
CPU 13 mA 39 mW
LPM 0.6 mA 1.8 mW
Tx 28.3 mA 85 mW
Rx_idle 24 mA 72 mW
Rx_active 20 mA 60 mW

client and server. The ContikiMAC RDC driver is used to provide
accurate energy consumption. As the time measurements only tell
how long the radio was used to transmit or listen, non-dependent
on what power mode the chip is in, it is assumed that the radio is
used all the time when the chip is in CPU mode. If there is still radio
time left after subtracting the CPU time, it is subtracted from the
low power mode (LPM) time. This is only done if the CPU time is
shorter than the total radio time. To make the calculation simpler,
the chip is only allowed to go to the first low-power mode of the
three available modes. The energy used is calculated from the time
spent in each power state. The Energest and Powertrace applica-
tions for Contiki [31], used for the time measurements, provides
the time in number of ticks (T) instead of seconds. The timer in
Contiki produces 32.768 ticks per second (Ts) on OpenMote and
therefore the energy is calculated with this formula:

Energy = Time - Power = <T1> -(-V).
s

The time when the chip is using the radio, is split in three dif-
ferent power modes. The first mode is when transmitting data (Tx),
the second mode is when listening to the network (Rx_idle) and the
last when actually receiving data from the network (Rx_active). The
equation used for the energy consumption calculations depends
on the difference between the CPU and radio time. Therefore if

(tcpu — tradio) > 0:

Energy = [(tcpy — tradio) - Pepul + [tipm - Prpm]
+ [th : PTX] + [tRx_active : Plb<_active]
+ [tre_idie * Prx_ide] -

Otherwise if (tcpy — tragio) < 0:

Energy = [(tipm tepu)) - Prem]
+ [th . PTX] + [tRx,active . PRx,active]

- (tradio -

+ [tr_idle = Pre_idte] -

The CC2538 chip runs on 3-V and the values for the current that
it draws in different power modes are provided in a document by

15
[0 0 Pre Shared Key B Raw Public Key BB Certificate ‘
_ 10.8
’g 10
P
&5
)
s 5
21514 151414 17 E§ 2
AN LI I_I []

Flight 1-2 Flight 2-3 Flight 3-4 Flight4-5 Flight 5-6
Client Server Client Server Client

Fig. 15. Energy consumption for different handshake flights, both when a sensor
nodes is running the DTLS client and the DTLS server, for all the CoAP security
modes.

Texas Instruments [27], and displayed in Table 1. The current for
the Tx mode is provided both for radio power of 0- and 7-dBm. The
OpenMote is configured to transmit at 3-dBm. The value used in the
energy estimation is calculated from the two values provided, by
assuming that the current changes linearly with the transmission
power.

Because OpenMote only uses CPU mode and no radio during
the handshake, the energy consumption can easily be calculated
from the time measurements provided earlier using the simple
energy formula. On the other hand when calculating the energy
consumption of different flights, the time measurements cover
the time from when the first message in a flight is sent and until
the message is received from the next flight. Here the processing
of messages for the next flight has not started. Therefore two
flights are covered in one measurement. This is done to avoid time
synchronization between client and server when each flight starts
on one end and finishes on the other end. Because of this constraint,
it is not possible to measure only the first flight received and the
last flight sent by the server.

Fig. 15 shows that the longer time for the ECC operations
(shown in Figs. 10 and 12) translates into higher energy consump-
tion for ECC operation. We also see how the longer certificate
messages, in flight 4 and 5, in the certificate-based mode affect
the energy consumption compared to the RPK mode. For the same
flights, more messages and data is transmitted in these two se-
curity modes than for the PSK mode; and the effect it has on
the energy consumption can clearly be seen in Fig. 15. However,
for other flights the difference is not significant between security
modes.

5.3. DTLS record protocol in SecureSense — round trip time

We measure the round trip time for transmitting data payloads
of different sizes using both simple UDP packets and DTLS Record
layer-secured packets. Round trip time is the time it takes to send
data from a client to a server and then sending the same data back
from the server to the client. We also compared the difference
between single-hop and multi-hop communications, using the
setup shown in Fig. 8.

Fig. 16 shows the difference between sending data secured with
DTLS and simple UDP through single-hop. Here, CSMA MAC driver
is used for reliability. NullRDC is used instead of ContikiMAC to
avoid time delays and packet loss, caused by ContikiMAC. Here
both the software (SW) and hardware (HW) implementations for
AES are used. The figure shows that the round-trip time is longer
in the secure data transmission for all data sizes. As expected the
hardware implementation takes a shorter time than the software
implementation. When sending 64 bytes of data, the difference
between UDP and DTLS is even bigger than for the other data sizes.

S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51 49

150

15 Ooupr BaDTLS (HW AES) HEDTLS (SW AES)]
— 100
£
s 75
E
E 50

4 3133 32
“ N D
32bytes 64 bytes 128 bytes 192 by”tesr 256 bytes

Fig. 16. Round Trip Time for SecureSense for sending insecure and DTLS-secured
data over a single hop for different data sizes, with and without hardware crypto.

140

—+ UDP —0— DTLS

120

100

Time [ms]

80

60

| \ \ \
1 2 3 4

Number of hops [#]

Fig. 17. Round Trip Time for SecureSense for sending insecure and DTLS-secured
data of 128-bytes for different number of hops, with hardware crypto.

The reason is that the link layer frame gets larger than the 127 byte
MTU of IEEE 802.15.4, for the secure transmission. Therefore the
DTLS packet is fragmented on the 6LoWPAN layer, which results
in longer round-trip time. Of the 127 bytes available for the frame,
only 104 bytes can actually be used for the payload of the frame in
Contiki, the rest is reserved for the frame header. Uncompressed
IP and UDP headers are normally 48 bytes in total, while in Contiki
they are compressed to 18 bytes using 6LoWPAN. Therefore when
sending with UDP, 18 bytes are appended to the application data.
On the other hand, when sending with DTLS, 47 bytes are appended
to the application data, because of the additional DTLS header of 13
bytes and the encrypted application data with HMAC that take up
the last 16 bytes. Because of this, only DTLS is fragmented, as its
frame payload size is larger then 104 bytes.

In Fig. 16, we also see that when the application data size
increases, the time difference between UDP and DTLS also becomes
larger. This is because it takes longer time to encrypt larger packets,
while the additional DTLS packet overhead is of static size and the
number of 6LOWPAN fragments is the same for all sizes other than
64 bytes.

Fig. 17 shows how the round-trip time changes with the num-
ber of hops for 128 bytes of data. Here only the hardware AES
implementation is used. For each hop the round-trip time increases
faster for DTLS than UDP. That is because the DTLS packets are
larger and therefore more data is forwarded at each hop, which
results in longer processing time at every node.

25
19.87
= 20 78 18.06 =7
2 45y 1602 16.61
S 15
é 11.27
g 10
<]
U
0
52?
é\o $\0 @o , S\O ﬂ\o $\o
?*
O«Q\»% O@\»C" O«g\»% e C,O?S CO?* C&Q

Fig. 18. Average static RAM memory usage for client and server using different
configurations.

5.4. SecureSense storage overheard

Recall the sensor node in a 6LOWPAN network has limited RAM
and ROM resources, we therefore measure these for SecureSense.
We measure static RAM memory usage for different configura-
tions. We use arm-none-eabi-size tool get the static memory con-
sumption of a complied Contiki application. For simplification, the
average value of both client and server is used, as both use similar
amount of RAM. The stack size is configured to be 4096 bytes, while
the implementation works with stack size as small as 3072 bytes.
For simplification, the stack will not be included in the RAM usage.
Both TCP and RPL are disabled in the applications to save memory
space, but they use in total around 1200 bytes extra RAM, about
half of that each.

Fig. 18 shows that when using CoAP in certificate-based mode,
there is only around 8 Kbytes of RAM left, of the total 32 Kbytes,
for other applications, when considering stack size of 4 Kbytes.
However, this is enough for most IoT applications that run on a
sensor node. Lower memory usage could be achieved by making
the stack smaller, or through other optimizations of the OpenMote
platform. The figure shows also that there is a steady increase
in RAM usage when going from the PSK mode to the Certificate-
based mode. When the CoAP PSK mode is added on top of UDP, the
RAM increase is 3.3 Kbytes while for certificate-based mode the
increase is 6.6 Kbytes. The difference here is because of the extra
ECC functionality in the RPK and certificate-based modes. When
adding the CoAP protocol, the RAM increase is around 2 Kbytes.
When adding security to CoAP the increase is almost the same
as when using DTLS with UDP. The increase in RAM usage, from
the UDP application to using CoAP in certificate-based mode, is
around 75%. Even with this increase it is possible to run additional
applications when using any of the CoAP security modes.

5.5. SecureSense: Scalability and robustness

SecureSense is built upon standard protocols that are designed
to scale for billions of IoT devices. Though the individual protocols
are scalable, the scalability of the system as a whole is proportional
to the capabilities of involved end hosts. The SecureSense imple-
mentation can handle multiple connections at a time as long as
the hardware resources of the involved hosts allow. For instance,
OpenMote with just 32 kB of RAM is able to run CoAP with full
certificate-based mode. We have evaluated the SecureSense over-
head in terms of energy, processing time and storage, which gives
a clear indication of resource requirements in constrained devices.
On the cloud-side, our SicsSense implementation allows multiple
active connections and its scalability is also directly proportional to
the capabilities of the hosting device.

50 S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51

Our implementations of the involved SecureSense protocols
(such as CoAP, DTLS, and IPv6) are standard compliant. We do not
propose any new protocol but use existing standards and built
an end-to-end cloud-connected IoT system, implement it in an
IoT setup and evaluate its overhead. The security analysis of the
SecureSense individual protocols is already discussed in the pro-
posed standards [8,7,32] as well as in other existing literature such
as [33,1,34], which holds true in our work. Though the individual
chosen protocols are robust and scalable to billions of devices,
implementation bugs are possible. Software security analysis of the
Contiki OS and our implementations requires an extensive amount
of work and is outside the scope of this paper. In an ongoing EU
project [35], we are looking at the software security of the Contiki
0S and the IoT protocols implemented in Contiki.

Evaluation Synthesis.

Our experimental evaluation seeks to characterize in detail
the overhead of the implemented solution, notably determining
(i) latencies to complete operations, (ii) energy consumption, and
(iii) memory usage. They all depend on computation and commu-
nication overhead, and consequently the mode of operation of the
implemented protocols and the involved cryptographic primitives;
and the used platform design.

Our findings ascertain the feasibility and more so the practical-
ity of the implemented solutions. They highlight the challenging,
in terms of any of the three metrics, aspects, possibly stressing the
small-footprint platforms we use, and are typically expected to be
broadly deployed for IoT applications. Last but not least, they shed
light on a gamut of implementation details and are comprehensive
in their consideration of features.

In brief, the DTLS handshake is found to be challenging due to
the public key cryptography involved, yet feasible, with latencies
for the full process less than 4 s. As those transactions are infre-
quent, and symmetric key cryptography, vastly more efficient, for
the bulk of communications, the scheme is viable. Using symmetric
key cryptography results in a mild increase of the latencies as the
data sizes increase.

Related, the use of cryptographic hardware for the public key
(elliptic curve) operations is clearly beneficial reducing delays by
more than order of magnitude. The power consumption measure-
ments are correlated to the overheads due to cryptographic opera-
tions and transmission of security data, notably certificates; clearly
higher for public key operations. The memory consumptions varies
for different modes, with substantial increase due to security; yet
not at an encumbering level.

6. Conclusions

Connecting everyday physical objects with the Internet and
accessing and controlling them through any host on the Internet,
such as computing cloud, expected to bring huge change in the
way we live and work today. Security could become a nightmare
in this transition if not enforced at the design phase of building
this Internet of Things (IoT). We have presented SecureSense that
adds security at the core of cloud-connected IoT. SecureSense uses
standardized Internet protocols and provides secure E2E data com-
munication directly between an IoT device and a cloud platform.
We have integrated the IoT protocol CoAP and the security protocol
DTLS into the Sics™Sense cloud platform and also provided these
protocols in 6LoOWPAN networks, enabling all three security modes
of CoAP.

We have provided a detailed empirical evaluation of Secure-
Sense using real IoT hardware and a cloud platform. Our evalu-
ations showed that though asymmetric cryptographic operations
have the biggest impact on the performance of SecureSense, the
overhead can be drastically reduced using off-the-shelf sensor

nodes that come with hardware crypto. Our evaluations set the
performance benchmarks for all the three security modes of CoAP
and show that SecureSense is a viable E2E communication security
solution for the cloud-connected IoT, in term of energy, time, and
storage overhead. We conclude that it is possible to use the strong
government-grade certificate-based security in battery-powered
[oT devices (having just 32K of RAM), and the timing and energy
overhead is acceptable for most IoT applications.

Acknowledgments

This research has partly been funded by the Strategic Innova-
tion Program for Internet of Things (SIP-IoT), a joint venture of
VINNOVA, Formas och Energimyndigheten; and partly by the EU
H2020 project NobelGrid under grant no. 646184.

References

[1] S.Raza, H.Shafagh, K. Hewage, R. Hummen, T. Voigt, Lithe: Lightweight secure
CoAP for the internet of things, IEEE Sensors |. 13 (10) (2013) 3711-3720.

[2] RISE SICS - sense.sics.se, Sics™Sense Cloud Platform Suite, https://github.com/
sics-iot/sicsthsense.

[3] Digilnternational, Digi Device Cloud (Etherios Device Cloud). http://www.digi.
com/products/cloud/digi-device-cloud.

[4] LogMeln Inc (LOGM), Xively enterprise IoT platform. https://xively.com/
whats_xively/.

[5] L. Jiang, L. Da Xu, H. Cai, Z. Jiang, F. Bu, B. Xu, An IoT-oriented data storage
framework in cloud computing platform, IEEE Trans. Ind. Inform. 10 (2) (2014)
1443-1451.

[6] Eclipse, Leshan, an OMA Lightweight M2M (LWM2M) implementation. https:
//github.com/eclipse/leshan.

[7] Z.Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP),
RFC 7252, 2014. http://www.ietf.org/rfc/rfc7252.txt.

[8] E.Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2 RFC
6347, 2012. http://www.ietf.org/rfc/rfc6347.txt.

[9] J.Hui, P. Thubert, Compression Format for IPv6 Datagrams over IEEE 802.15.4-

Based Networks, RFC 6282. Request for Comments, IETF, Internet Engineering
Task Force. 2011. http://www.ietf.org/rfc/rfc6282.txt.

[10] W.Hu, P. Corke, W.C. Shih, L. Overs, secfleck: A public key technology platform
for wireless sensor networks, in: Wireless Sensor Networks, Springer, 2009,
pp. 296-311.

[11] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, G. Carle, A DTLS based end-to-end
security architecture for the Internet of Things with two-way authentication,
in: Local Computer Networks Workshops (LCN Workshops), 2012 IEEE 37th
Conference on, IEEE, 2012, pp. 956-963.

[12] Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve
Cryptography, version 2.0, 2009.

[13] O.P. nol Pifiol, S. Raza, J. Eriksson, T. Voigt, BSD-based elliptic curve cryptogra-
phy for the open internet of things, in: The 7th IFIP International Conference
on New Technologies, Mobility and Security, NTMS'15, Paris, France, 2015.

[14] M. Campagna, SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme
(ECQV), Version 1.0, Certicom Research, 2013.

[15] S.Santesson, H. Tschofenig, Transport Layer Security (TLS) Cached Information
Extension, Internet-Draft draft-ietf-tls-cached-info-19, IETF Secretariat, 2015.

[16] R. Hummen, H. Wirtz, J.H. Ziegeldorf,]. Hiller, K. Wehrle, Tailoring end-to-end
IP security protocols to the Internet of Things, in: Network Protocols (ICNP),
2013 21st IEEE International Conference on, IEEE, 2013, pp. 1-10.

[17] J. Granjal, E. Monteiro,]. Sa Silva, End-to-end transport-layer security for
Internet-integrated sensing applications with mutual and delegated ECC
public-key authentication, in: IFIP Networking Conference, 2013, IEEE, 2013,
pp. 1-9.

[18] S. Fouladgar, B. Mainaud, K. Masmoudi, H. Afifi, Tiny 3-TLS: A trust delegation
protocol for wireless sensor networks, in: Security and Privacy in Ad-Hoc and
Sensor Networks, Springer, 2006, pp. 32-42.

[19] R. Hummen, H. Shafagh, S. Raza, T. Voig, K. Wehrle, Delegation-based au-
thentication and authorization for the IP-based internet of things, in: Sensing,
Communication, and Networking (SECON), 2014 Eleventh Annual IEEE Inter-
national Conference on, IEEE, 2014, pp. 284-292.

[20] LE. Bagci, S. Raza, U. Roedig, T. Voigt, Fusion: coalesced confidential storage
and communication framework for the IoT, Secur. Commun. Netw. (2015).
http://dx.doi.org/10.1002/sec.1260.

http://refhub.elsevier.com/S0167-739X(17)31236-0/sb1
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb1
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb1
https://github.com/sics-iot/sicsthsense
https://github.com/sics-iot/sicsthsense
https://github.com/sics-iot/sicsthsense
http://www.digi.com/products/cloud/digi-device-cloud
http://www.digi.com/products/cloud/digi-device-cloud
http://www.digi.com/products/cloud/digi-device-cloud
https://xively.com/whats%5Fxively/
https://xively.com/whats%5Fxively/
https://xively.com/whats%5Fxively/
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb5
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb5
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb5
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb5
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb5
https://github.com/eclipse/leshan
https://github.com/eclipse/leshan
https://github.com/eclipse/leshan
http://www.ietf.org/rfc/rfc7252.txt
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc6282.txt
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb10
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb10
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb10
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb10
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb10
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb11
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb14
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb14
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb14
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb15
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb15
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb15
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb16
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb16
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb16
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb16
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb16
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb17
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb18
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb18
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb18
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb18
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb18
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb19
http://dx.doi.org/10.1002/sec.1260

(21]

(22]

(23]
(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

S. Raza et al. / Future Generation Computer Systems 77 (2017) 40-51 51

M. Tiloca, C. Gehrmann, L. Seitz, On improving resistance to denial of service
and key provisioning scalability of the dtls handshake, Int.]. Inf. Security
(2016) 1-21.

S.Raza, L. Seitz, D. Sitenkov, G. Selander, S3K: Scalable security with symmetric
KeysDTLS key establishment for the Internet of Things, IEEE Trans. Autom. Sci.
Eng. 13 (3) (2016) 1270-1280.

C. Bormann, M. Ersue, A. Keranen, Terminology for Constrained-Node Net-
works, RFC 7228, 2014. http://www.ietf.org/rfc/rfc7228.txt.

P. Tuset-Peird, X. Vilajosana, OpenMote Technologies. http://www.openmote.
com.

M. Kovatsch, M. Lanter, Z. Shelby, Californium: Scalable cloud services for the
internet of things with CoAP, in: Internet of Things (IOT), 2014 International
Conference on the, IEEE, 2014, pp. 1-6.

A. Dunkels, O. Schmidt, N. Finne, J. Eriksson, F. Osterlind, N. Tsiftes, M. Durvy,
The Contiki OS: The Operating System for the Internet of Things, 2011.

Texas Instruments, CC2538 Powerful Wireless Microcontroller System-On-
Chip for 2.4-GHz IEEE 802.15.4, 6LOWPAN, and ZigBee® Applications. http:
/[www.ti.com/lit/ds/swrs096d/swrs096d.pdf. (Accessed December 12 2016.
0. Bergmann, TinyDTLS Software Library Implementation, TZI Uni Bremen.
http://tinydtls.sourceforge.net.

M. Kovatsch, S. Duquennoy, A. Dunkels, A low-power CoAP for Contiki,
in: Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International
Conference on, IEEE, 2011, pp. 855-860.

P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, T. Kivinen, Using Raw Public
Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS), RFC 7250, 2014. http://www.ietf.org/rfc/rfc7250.txt.

A. Dunkels,]. Eriksson, N. Finne, N. Tsiftes, Powertrace: Network-Level Power
Profiling for Low-Power Wireless Networks, Swedish Institute of Computer
Science, 2011.

S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC
2460 (Draft Standard), updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935,
6946, 7045, 7112, 1998. URL http://www.ietf.org/rfc/rfc2460.txt.

Y. Sheffer, R. Holz, P. Saint-Andre, Summarizing Known Attacks on Transport
Layer Security (TLS) and Datagram TLS (DTLS), RFC 7457 RFC 7457 (Informa-
tional), Request for Comments, IETF, Internet Engineering Task Force, 2015.
http://www.ietf.org/rfc/rfc7457.txt.

C.E. Caicedo, J.B. Joshi, S.R. Tuladhar, IPv6 security challenges, IEEE Comput.
42 (2)(2009) 36-42.

Inria France (coordinator), H2020 Vessedia Project (2016-2019): Verification
Engineering of Safety and Seuciry Critical Dynamic Industrial Applications.

Shahid Raza is the Director of Security Lab and an expert
researcher at the RISE SICS Stockholm where he has been

' working since 2008. Shahid has completed his industrial

Ph.D. from the Malardalen University Vdsteras and SICS
Stockholm in 2013. He also holds a Master of Science
degree from KTH The Royal Institute of Technology, Stock-
holm. Raza’s research interests include security issues in
wireless sensor network in general and the Internet of

5 Things (IoT) in particular.

Témas pér Helgason is a researcher at RISE SICS work-
ing primarily on the Internet of Things security. Témas
received his B.Sc. degree in Electrical Engineering and
Computer Science in 2013 from University of Iceland. He

1 | earned his M.Sc. degree in Electrical Engineering from KTH

Royal Institute of Technology, Stockholm, Sweden in 2015
with focus on network services and security.

Panos Papadimitratos earned his Ph.D. degree from Cor-
nell University, Ithaca, NY, in 2005. He then held positions
at Virginia Tech, EPFL and PoliTo. Panos currently leads
the Networked Systems Security Group at KTH, Stock-
holm, Sweden. His research agenda includes a gamut of
security and privacy problems, with emphasis on wireless
networks. He was the program co-chair for the ACM WiSec
and the TRUST conferences and will serve as the general
chair of the WISec (2018) and PETS (2019) conferences.
Panos is a member of the Young Academy of Europe.

Thiemo Voigt manages the Networked Embedded Sys-
tems group at the Swedish Institute of Computer Science.
He shares his time between SICS and Uppsala University
where he is Professor for Wireless Sensor Networks. His
main interests are in networking and system issues in
wireless sensor networks and the Internet of Things.

http://refhub.elsevier.com/S0167-739X(17)31236-0/sb21
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb21
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb21
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb21
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb21
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb22
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb22
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb22
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb22
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb22
http://www.ietf.org/rfc/rfc7228.txt
http://www.openmote.com
http://www.openmote.com
http://www.openmote.com
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb25
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb25
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb25
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb25
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb25
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb26
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb26
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb26
http://www.ti.com/lit/ds/swrs096d/swrs096d.pdf
http://www.ti.com/lit/ds/swrs096d/swrs096d.pdf
http://www.ti.com/lit/ds/swrs096d/swrs096d.pdf
http://tinydtls.sourceforge.net
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb29
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb29
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb29
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb29
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb29
http://www.ietf.org/rfc/rfc7250.txt
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb31
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb31
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb31
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb31
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb31
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc7457.txt
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb34
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb34
http://refhub.elsevier.com/S0167-739X(17)31236-0/sb34

	SecureSense: End-to-end secure communication architecture for the cloud-connected Internet of Things
	Introduction
	Background and related work
	Cloud connected IoT
	CoAP and DTLS
	IoT hardware

	SecureSense: Standard-based E2E secure communication in the cloud-connected IoT
	Cloud side
	6LoWPAN side

	Implementation
	Platforms and software
	Integrating CoAP and DTLS in SicsthSense
	Complementing tinyDTLS
	Hardware crypto acceleration

	Evaluation
	Handshake protocol in SecureSense — time overhead
	DTLS handshake completion time
	Individual handshake message processing time
	Impact of hardware and software crypto on time

	Handshake protocol in SecureSense — Energy Overhead
	DTLS record protocol in SecureSense — round trip time
	SecureSense storage overheard
	SecureSense: Scalability and robustness

	Conclusions
	Acknowledgments
	References

